Vector-Valued Jack Polynomials from Scratch
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Vector-valued Jack polynomials associated to the symmetric group $\mathfrak S_N$ are polynomials with multiplicities in an irreducible module of $\mathfrak S_N$ and which are simultaneous eigenfunctions of the Cherednik–Dunkl operators with some additional properties concerning the leading monomial. These polynomials were introduced by Griffeth in the general setting of the complex reflections groups $G(r,p,N)$ and studied by one of the authors (C. Dunkl) in the specialization $r=p=1$ (i.e. for the symmetric group). By adapting a construction due to Lascoux, we describe an algorithm allowing us to compute explicitly the Jack polynomials following a Yang–Baxter graph. We recover some properties already studied by C. Dunkl and restate them in terms of graphs together with additional new results. In particular, we investigate normalization, symmetrization and antisymmetrization, polynomials with minimal degree, restriction etc. We give also a shifted version of the construction and we discuss vanishing properties of the associated polynomials.
Keywords: Jack polynomials; Yang–Baxter graph; Hecke algebra.
@article{SIGMA_2011_7_a25,
     author = {Charles F. Dunkl and Jean-Gabriel Luque},
     title = {Vector-Valued {Jack} {Polynomials} from {Scratch}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a25/}
}
TY  - JOUR
AU  - Charles F. Dunkl
AU  - Jean-Gabriel Luque
TI  - Vector-Valued Jack Polynomials from Scratch
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a25/
LA  - en
ID  - SIGMA_2011_7_a25
ER  - 
%0 Journal Article
%A Charles F. Dunkl
%A Jean-Gabriel Luque
%T Vector-Valued Jack Polynomials from Scratch
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a25/
%G en
%F SIGMA_2011_7_a25
Charles F. Dunkl; Jean-Gabriel Luque. Vector-Valued Jack Polynomials from Scratch. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a25/

[1] Baratta W., Forrester P. J., “Jack polynomials fractional quantum Hall states and their generalizations”, Nuclear Phys. B, 843 (2011), 362–381, arXiv: 1007.2692 | DOI | MR | Zbl

[2] Baker T. H., Forrester P. J., “Symmetric Jack polynomials from non-symmetric theory”, Ann. Comb., 3 (1999), 159–170, arXiv: q-alg/9707001 | DOI | MR | Zbl

[3] Bervenig B. A., Haldane F. D. M., “Clustering properties and model wave functions for non-abelian fractional quantum Hall quasielectrons”, Phys. Rev. Lett., 102 (2009), 066802, 4 pp., arXiv: 0810.2366 | DOI | MR

[4] Dunkl C. F., “Symmetric and antisymmetric vector-valued Jack polynomials”, Sém. Lothar. Combin., 64 (2010), Art. B64a, 31 pp., arXiv: 1001.4485 | MR

[5] Dunkl C., Griffeth S., “Generalized Jack polynomials and the representation theory of rational Cherednik algebras”, Selecta Math. (N.S.), 16 (2010), 791–818, arXiv: 1002.4607 | DOI | MR | Zbl

[6] Etingof P., Stoica E., “Unitary representation of rational Cherednik algebras”, With an appendix by Stephen Griffeth, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl

[7] Griffeth S., “Jack polynomials and the coinvariant ring of $G(r,p,n)$”, Proc. Amer. Math. Soc., 137 (2009), 1621–1629, arXiv: 0806.3292 | DOI | MR | Zbl

[8] Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362 (2010), 6131–6157, arXiv: 0707.0251 | DOI | MR | Zbl

[9] Knop F., Sahi S., “A recursion and a combinatorial formula for Jack polynomials”, Invent. Math., 128 (1997), 9–22, arXiv: q-alg/9610016 | DOI | MR | Zbl

[10] Jolicoeur T., Luque J.-G., “Highest weight Macdonald and Jack polynomials”, J. Phys. A: Math. Theor., 44 (2011), 055204, 21 pp., arXiv: 1003.4858 | DOI | MR | Zbl

[11] Jucys A.-A. A., “Symmetric polynomials and the center of the symmetric group ring”, Rep. Math. Phys., 5 (1974), 107–112 | DOI | MR | Zbl

[12] Laughlin R. B., “Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations”, Phys. Rev. Lett., 50 (1983), 1395–1398 | DOI

[13] Lascoux A., Young's representation of the symmetric group, available at http://www-igm.univ-mlv.fr/~al/ARTICLES/ProcCrac.ps.gz

[14] Lascoux A., “Yang–Baxter graphs, Jack and Macdonald polynomials”, Ann. Comb., 5 (2001), 397–424 | DOI | MR | Zbl

[15] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, New York; Oxford University Press, 1995 | MR | Zbl

[16] Macdonald I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[17] Murphy G. E., “A new construction of Young's seminormal representation of the symmetric groups”, J. Algebra, 69 (1981), 287–297 | DOI | MR | Zbl

[18] Okounkov A., Vershik A., “A new approach to the representation theory of the symmetric groups. II”, J. Math. Sci. (N.Y.), 131:2 (2005), 5471–5494, arXiv: ; Okounkov A., Vershik A., “A new approach to representation theory of symmetric groups”, Selecta Math. (N.S.), 2 (1996), 581–605 math.RT/0503040 | DOI | MR | DOI | MR | Zbl