@article{SIGMA_2011_7_a25,
author = {Charles F. Dunkl and Jean-Gabriel Luque},
title = {Vector-Valued {Jack} {Polynomials} from {Scratch}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a25/}
}
Charles F. Dunkl; Jean-Gabriel Luque. Vector-Valued Jack Polynomials from Scratch. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a25/
[1] Baratta W., Forrester P. J., “Jack polynomials fractional quantum Hall states and their generalizations”, Nuclear Phys. B, 843 (2011), 362–381, arXiv: 1007.2692 | DOI | MR | Zbl
[2] Baker T. H., Forrester P. J., “Symmetric Jack polynomials from non-symmetric theory”, Ann. Comb., 3 (1999), 159–170, arXiv: q-alg/9707001 | DOI | MR | Zbl
[3] Bervenig B. A., Haldane F. D. M., “Clustering properties and model wave functions for non-abelian fractional quantum Hall quasielectrons”, Phys. Rev. Lett., 102 (2009), 066802, 4 pp., arXiv: 0810.2366 | DOI | MR
[4] Dunkl C. F., “Symmetric and antisymmetric vector-valued Jack polynomials”, Sém. Lothar. Combin., 64 (2010), Art. B64a, 31 pp., arXiv: 1001.4485 | MR
[5] Dunkl C., Griffeth S., “Generalized Jack polynomials and the representation theory of rational Cherednik algebras”, Selecta Math. (N.S.), 16 (2010), 791–818, arXiv: 1002.4607 | DOI | MR | Zbl
[6] Etingof P., Stoica E., “Unitary representation of rational Cherednik algebras”, With an appendix by Stephen Griffeth, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl
[7] Griffeth S., “Jack polynomials and the coinvariant ring of $G(r,p,n)$”, Proc. Amer. Math. Soc., 137 (2009), 1621–1629, arXiv: 0806.3292 | DOI | MR | Zbl
[8] Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362 (2010), 6131–6157, arXiv: 0707.0251 | DOI | MR | Zbl
[9] Knop F., Sahi S., “A recursion and a combinatorial formula for Jack polynomials”, Invent. Math., 128 (1997), 9–22, arXiv: q-alg/9610016 | DOI | MR | Zbl
[10] Jolicoeur T., Luque J.-G., “Highest weight Macdonald and Jack polynomials”, J. Phys. A: Math. Theor., 44 (2011), 055204, 21 pp., arXiv: 1003.4858 | DOI | MR | Zbl
[11] Jucys A.-A. A., “Symmetric polynomials and the center of the symmetric group ring”, Rep. Math. Phys., 5 (1974), 107–112 | DOI | MR | Zbl
[12] Laughlin R. B., “Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations”, Phys. Rev. Lett., 50 (1983), 1395–1398 | DOI
[13] Lascoux A., Young's representation of the symmetric group, available at http://www-igm.univ-mlv.fr/~al/ARTICLES/ProcCrac.ps.gz
[14] Lascoux A., “Yang–Baxter graphs, Jack and Macdonald polynomials”, Ann. Comb., 5 (2001), 397–424 | DOI | MR | Zbl
[15] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, New York; Oxford University Press, 1995 | MR | Zbl
[16] Macdonald I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[17] Murphy G. E., “A new construction of Young's seminormal representation of the symmetric groups”, J. Algebra, 69 (1981), 287–297 | DOI | MR | Zbl
[18] Okounkov A., Vershik A., “A new approach to the representation theory of the symmetric groups. II”, J. Math. Sci. (N.Y.), 131:2 (2005), 5471–5494, arXiv: ; Okounkov A., Vershik A., “A new approach to representation theory of symmetric groups”, Selecta Math. (N.S.), 2 (1996), 581–605 math.RT/0503040 | DOI | MR | DOI | MR | Zbl