Supersymmetric Quantum Mechanics and Painlevé IV Equation
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As it has been proven, the determination of general one-dimensional Schrödinger Hamiltonians having third-order differential ladder operators requires to solve the Painlevé IV equation. In this work, it will be shown that some specific subsets of the higher-order supersymmetric partners of the harmonic oscillator possess third-order differential ladder operators. This allows us to introduce a simple technique for generating solutions of the Painlevé IV equation. Finally, we classify these solutions into three relevant hierarchies.
Keywords: supersymmetric quantum mechanics; Painlevé equations.
@article{SIGMA_2011_7_a24,
     author = {David Berm\'udez and David J. Fern\'andez C.},
     title = {Supersymmetric {Quantum} {Mechanics} and {Painlev\'e} {IV} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a24/}
}
TY  - JOUR
AU  - David Bermúdez
AU  - David J. Fernández C.
TI  - Supersymmetric Quantum Mechanics and Painlevé IV Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a24/
LA  - en
ID  - SIGMA_2011_7_a24
ER  - 
%0 Journal Article
%A David Bermúdez
%A David J. Fernández C.
%T Supersymmetric Quantum Mechanics and Painlevé IV Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a24/
%G en
%F SIGMA_2011_7_a24
David Bermúdez; David J. Fernández C. Supersymmetric Quantum Mechanics and Painlevé IV Equation. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a24/

[1] Sachdev P. L., Nonlinear ordinary differential equations and their applications, Monographs and Textbooks in Pure and Applied Mathematics, 142, Marcel Dekker, Inc., New York, 1991 | MR | Zbl

[2] Andrianov A. A., Ioffe M., Spiridonov V., “Higher-derivative supersymetry and the Witten index”, Phys. Lett. A, 174 (1993), 273–279, arXiv: hep-th/9303005 | DOI | MR

[3] Fernández D. J., Fernández-García N., “Higher-order supersymmetric quantum mechanics”, AIP Conf. Proc., 744, 2005, 236–273, arXiv: quant-ph/0502098 | DOI | MR

[4] Lamb G. L., Elements of soliton theory, Pure and Applied Mathematics, A Wiley-Interscience Publication, New York; John Wiley Sons, Inc., 1980 | MR | Zbl

[5] Veselov A. P., Shabat A. B., “Dressing chains and spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27:2 (1993), 81–96 | DOI | MR | Zbl

[6] Dubo S. Y., Eleonsky V. M., Kulagin N. E., “Equidistant spectra of anharmonic oscillators”, Chaos, 4 (1994), 47–53 | DOI | MR | Zbl

[7] Adler V. E., “Nonlinear chains and Painlevé equations”, Phys. D, 73 (1994), 335–351 | DOI | MR | Zbl

[8] Spiridonov V., “Universal superpositions of coherent states and self-similar potentials”, Phys. Rev. A, 52 (1995), 1909–1935, arXiv: quant-ph/9601030 | DOI | MR

[9] Andrianov A., Cannata F., Ioffe M., Nishnianidze D., “Systems with higher-order shape invariance: spectral and algebraic properties”, Phys. Lett. A, 266 (2000), 341–349, arXiv: quant-ph/9902057 | DOI | MR | Zbl

[10] Fernández D. J., Negro J., Nieto L. M., “Elementary systems with partial finite ladder spectra”, Phys. Lett. A, 324 (2004), 139–144 | DOI | Zbl

[11] Carballo J. M., Fernández D. J., Negro J., Nieto L. M., “Polynomial Heisenberg algebras”, J. Phys. A: Math. Gen., 37 (2004), 10349–10362 | DOI | MR | Zbl

[12] Mateo J., Negro J., “Third-order differential ladder operators and supersymmetric quantum mechanics”, J. Phys. A: Math. Theor., 41 (2008), 045204, 28 pp. | DOI | MR | Zbl

[13] Flaschka H., “A commutator representation of Painlevé equations”, J. Math. Phys., 21 (1980), 1016–1018 | DOI | MR | Zbl

[14] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolutions equations and ordinary differential equations of $P$-type. II”, J. Math. Phys., 21 (1980), 1006–1015 | DOI | MR | Zbl

[15] Sen A., Hone A. N. W., Clarkson P. A., “Darboux transformations and the symmetric fourth Painlevé equation”, J. Phys. A: Math. Gen., 38 (2005), 9751–9764 | DOI | MR | Zbl

[16] Filipuk G. V., Clarkson P. A., “The symmetric fourth Painlevé hierarchy and associated special polynomials”, Stud. Appl. Math., 121 (2008), 157–188 | DOI | MR | Zbl

[17] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials”, J. Math. Phys., 50 (2009), 012101, 23 pp., arXiv: 0807.2858 | DOI | MR | Zbl

[18] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé trascendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp., arXiv: 0811.1568 | DOI | MR | Zbl

[19] Andrianov A. A., Ioffe M., Cannata F., Dedonder J. P., “Second order derivative supersymmetry, $q$ deformations and the scattering problem”, Internat. J. Modern Phys. A, 10 (1995), 2683–2702, arXiv: hep-th/9404061 | DOI | MR | Zbl

[20] Bagrov V. G., Samsonov B. F., “Darboux transformation of the Schrödinger equation”, Phys. Particles Nuclei, 28 (1997), 374–397 | DOI | MR

[21] Mielnik B., Rosas-Ortiz O., “Factorization: little or great algorithm?”, J. Phys. A: Math. Gen., 37 (2004), 10007–10035 | DOI | MR | Zbl

[22] Fernández D. J., “Supersymmetric quantum mechanics”, AIP Conf. Proc., 1287, 2010, 3–36, arXiv: 0910.0192 | DOI

[23] Andrianov A., Sokolov A. V., “Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. I. General classification of reducibility and analysis of the third-order algebra”, J. Math. Sci., 143 (2007), 2707–2722, arXiv: 0710.5738 | DOI | MR

[24] Fernández D. J., Hussin V., Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states, J. Phys. A: Math. Gen., 32 (1999), 3603–3619 | DOI | MR | Zbl

[25] Spiridonov V., “Deformation of supersymmetric and conformal quantum mechanics through affine transformations”, NASA Conf. Pub., 3197, 1993, 93–108, arXiv: hep-th/9208073

[26] Junker G., Roy P., “Conditionally exactly solvable potentials: a supersymmetric construction method”, Ann. Physics, 270 (1998), 155–177, arXiv: quant-ph/9803024 | DOI | MR | Zbl

[27] Bassom A. P., Clarkson P. A., Hicks A. C., “Bäcklund transformations and solution hierarchies for the fourth Painleve equation”, Stud. Appl. Math., 95 (1995), 1–71 | MR | Zbl