@article{SIGMA_2011_7_a23,
author = {V\'eronique Hussin and Ian Marquette},
title = {Generalized {Heisenberg} {Algebras,} {SUSYQM} and {Degeneracies:} {Infinite} {Well} and {Morse} {Potential}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a23/}
}
TY - JOUR AU - Véronique Hussin AU - Ian Marquette TI - Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a23/ LA - en ID - SIGMA_2011_7_a23 ER -
%0 Journal Article %A Véronique Hussin %A Ian Marquette %T Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a23/ %G en %F SIGMA_2011_7_a23
Véronique Hussin; Ian Marquette. Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a23/
[1] Marquette I., “Superintegrability and higher order polynomial algebras”, J. Phys. A: Math. Theor., 43 (2010), 135203, 15 pp., arXiv: 0908.4399 | DOI | MR | Zbl
[2] Marquette I., “Construction of classical superintegrable systems with higher order integrals of motion from ladder operators”, J. Math. Phys., 51 (2010), 072903, 9 pp., arXiv: 1002.3118 | DOI | MR
[3] Fernández D. J., Hussin V., “Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states”, J. Phys. A: Math. Gen., 32 (1999), 3603–3619 | DOI | MR | Zbl
[4] Carbello J. M., Fernández D. J., Negro J., Nieto L. M., “Polynomial Heisenberg algebras”, J. Phys. A: Math. Gen., 37 (2004), 10349–10362 | DOI | MR
[5] Marquette I., “Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion”, J. Math. Phys., 50 (2009), 122102, 10 pp., arXiv: 0908.1246 | DOI | MR | Zbl
[6] Junker G., Supersymmetric methods in quantum and statistical physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996 | MR
[7] Marquette I., Winternitz P., “Superintegrable systems with third-order integrals of motion”, J. Phys. A: Math. Theor., 41 (2008), 304031, 10 pp., arXiv: 0711.4783 | DOI | MR | Zbl
[8] De Lange O. L., Raab R. E., Operator methods in quantum mechanics, The Clarendon Press, New York; Oxford University Press, 1991 | MR
[9] Delbecq C., Quesne C., “Nonlinear deformations of su(2) and su(1,1) generalizing Witten's algebra”, J. Phys. A: Math. Gen., 26 (1993), L127–L134 | DOI | MR | Zbl
[10] Eleonsky V. M., Korolev V. G., “On the nonlinear generalization of the Fock method”, J. Phys. A: Math. Gen., 28 (1995), 4973–4985 | DOI | MR | Zbl
[11] Eleonsky V. M., Korolev V. G., “On the nonlinear Fock description of quantum systems with quadratic spectra”, J. Phys. A: Math. Gen., 29 (1996), L241–L248 | DOI | MR | Zbl
[12] Ghosh A., Mitra P., Kundu A., “Multidimensional isotropic and anisotropic $q$-oscillator models”, J. Phys. A: Math. Gen., 29 (1996), 115–124, arXiv: hep-th/9511084 | DOI | MR | Zbl
[13] Quesne C., “Comment: J.-L. Chen, Y. Liu and M.-L. Ge Application of nonlinear deformation algebra to a physical system with Pöschl–Teller potential" [J. Phys. A: Math. Gen., 31, (1998), 6473–6481]”, J. Phys. A: Math. Gen., 32 (1999), 6705–6710, arXiv: math-ph/9911004 | DOI | MR | Zbl
[14] Chen J.-L., Zhang H.-B., Wang X.-H., Jing H., Zhao X.-G., “Raising and lowering operators for a two-dimensional hydrogen atom by an ansatz method”, Int. J. Theor. Phys., 39 (2000), 2043–2050 | DOI | Zbl
[15] Curado E. M. F., Rego-Monteiro M. A., “Multi-parametric deformed Heisenberg algebras: a route to complexity”, J. Phys. A: Math. Gen., 34 (2001), 3253–3264, arXiv: hep-th/0011126 | DOI | MR | Zbl
[16] Dong S.-H., Ma Z.-Q., “The hidden symmetry for a quantum system with an infinitely deep square-well potential”, Amer. J. Phys., 70 (2002), 520–521 | DOI | MR | Zbl
[17] Daoud M., Kibler M. R., “Fractional supersymmetry and hierarchy of shape invariant potentials”, J. Math. Phys., 47 (2006), 122108, 11 pp., arXiv: quant-ph/0609017 | DOI | MR | Zbl
[18] Dong S.-H., Factorization method in quantum mechanics, Fundamental Theories of Physics, 150, Springer, Dordrecht, 2007 | MR
[19] Curado E. M. F., Hassouni Y., Rego-Monteiro M. A., Rodrigues L. M. C. S., “Generalized Heisenberg algebra and algebraic method: the example of an infinite square-well potential”, Phys. Lett. A, 372 (2008), 3350–3355 | DOI | MR | Zbl
[20] Wang H.-B., Liu Y.-B., “Realizing the underlying quantum dynamical algebra $SU(2)$ in Morse potential,”, Chinese Phys. Lett., 27 (2010), 020301, 4 pp. | DOI
[21] Ioffe M. V., Nishnianidze D. N., “Exact solvability of two-dimensional real singular Morse potential”, Phys. Rev. A, 76 (2007), 052114, 5 pp., arXiv: 0709.2960 | DOI | MR
[22] Kuru S., Negro J., “Factorizations of one dimensional classical systems”, Ann. Physics, 323 (2008), 413–431, arXiv: 0709.4649 | DOI | MR | Zbl
[23] Cruz y Cruz S., Kuru S., Negro J., “Classical motion and coherent states for Pöschl–Teller potentials”, Phys. Lett. A, 372 (2008), 1391–1405 | DOI | MR | Zbl
[24] Dello Sbarba L., Hussin V., “Degenerate discrete energy spectra and associated coherent states”, J. Math. Phys., 48 (2007), 012110, 15 pp. | DOI | MR | Zbl
[25] Angelova M., Hussin V., “Generalized and Gaussian coherent states for the Morse potential”, J. Phys. A: Math. Theor., 41 (2008), 30416, 13 pp. | DOI | MR
[26] Angelova M., Hussin V., Squeezed coherent states and the Morse quantum system, arXiv: 1010.3277
[27] Dong S. H., Lemus R., Frank A., “Ladder operators for the Morse potential”, Int. J. Quant. Chem., 86 (2002), 433–439 | DOI
[28] Bagchi B., Mallik S., Quesne C., Infinite square well and periodic trajectories in classical mechanics, arXiv: physics/0207096
[29] Slater N. B., “Classical motion under a Morse potential”, Nature, 180 (1957), 1352–1353 | DOI | Zbl
[30] Itzykson C., Luck J. M., “Arithmetical degeneracies in simple quantum systems”, J. Phys. A: Math. Gen., 19 (1986), 211–239 | DOI | MR | Zbl
[31] Marquette I., “An infinite family of superintegrable systems from higher order ladder operators and supersymmetry”, Group 28: Physical and Mathematical Aspects of Symmetry: Proceedings of the 28th International Colloquium on Group-Theoretical Methods in Physics, J. Phys. Conf. Ser. (to appear) , arXiv: 1008.3073
[32] Post S., Winternitz P., A nonseparable quantum superintegrable system in 2D real Euclidean space, arXiv: 1101.5405 | MR