$\mathcal N=4$ Multi-Particle Mechanics, WDVV Equation and Roots
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the relation of $\mathcal N=4$ superconformal multi-particle models on the real line to the WDVV equation and an associated linear equation for two prepotentials, $F$ and $U$. The superspace treatment gives another variant of the integrability problem, which we also reformulate as a search for closed flat Yang–Mills connections. Three- and four-particle solutions are presented. The covector ansatz turns the WDVV equation into an algebraic condition, for which we give a formulation in terms of partial isometries. Three ideas for classifying WDVV solutions are developed: ortho-polytopes, hypergraphs, and matroids. Various examples and counterexamples are displayed.
Keywords: superconformal mechanics; Calogero models; WDVV equation; deformed root systems.
@article{SIGMA_2011_7_a22,
     author = {Olaf Lechtenfeld and Konrad Schwerdtfeger and Johannes Th\"urigen},
     title = {$\mathcal N=4$ {Multi-Particle} {Mechanics,} {WDVV} {Equation} and {Roots}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a22/}
}
TY  - JOUR
AU  - Olaf Lechtenfeld
AU  - Konrad Schwerdtfeger
AU  - Johannes Thürigen
TI  - $\mathcal N=4$ Multi-Particle Mechanics, WDVV Equation and Roots
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a22/
LA  - en
ID  - SIGMA_2011_7_a22
ER  - 
%0 Journal Article
%A Olaf Lechtenfeld
%A Konrad Schwerdtfeger
%A Johannes Thürigen
%T $\mathcal N=4$ Multi-Particle Mechanics, WDVV Equation and Roots
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a22/
%G en
%F SIGMA_2011_7_a22
Olaf Lechtenfeld; Konrad Schwerdtfeger; Johannes Thürigen. $\mathcal N=4$ Multi-Particle Mechanics, WDVV Equation and Roots. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a22/

[1] Donets E. E., Pashnev A., Rosales J. J., Tsulaia M. M., “$\mathcal N=4$ supersymmetric multidimensional quantum mechanics, partial susy breaking and superconformal quantum mechanics”, Phys. Rev. D, 61 (2000), 043512, 11 pp., arXiv: hep-th/9907224 | DOI | MR

[2] Wyllard N., “(Super)conformal many-body quantum mechanics with extended supersymmetry”, J. Math. Phys., 41 (2000), 2826–2838, arXiv: hep-th/9910160 | DOI | MR | Zbl

[3] Bellucci S., Galajinsky A., Krivonos S., “New many-body superconformal models as reductions of simple composite systems”, Phys. Rev. D, 68 (2003), 064010, 7 pp., arXiv: hep-th/0304087 | DOI

[4] Bellucci S., Galajinsky A., Latini E., “New insight into the Witten–Dijkgraff–Verlinde–Verlinde equation”, Phys. Rev. D, 71 (2005), 044023, 8 pp., arXiv: hep-th/0411232 | DOI | MR

[5] Galajinsky A., Lechtenfeld O., Polovnikov K., “$\mathcal N=4$ superconformal Calogero models”, J. High Energy Phys., 2007:11 (2007), 008, 23 pp., arXiv: 0708.1075 | DOI | MR

[6] Galajinsky A., Lechtenfeld O., Polovnikov K., “$\mathcal N=4$ mechanics, WDVV equations and roots”, J. High Energy Phys., 2009:3 (2009), 113, 28 pp., arXiv: 0802.4386 | DOI | MR

[7] Bellucci S., Krivonos S., Sutulin A., “$\mathcal N=4$ supersymmetric 3-particles Calogero model”, Nuclear Phys. B, 805 (2008), 24–39, arXiv: 0805.3480 | DOI | MR | Zbl

[8] Fedoruk S., Ivanov E., Lechtenfeld O., “Supersymmetric Calogero models by gauging”, Phys. Rev. D, 79 (2009), 105015, 6 pp., arXiv: 0812.4276 | DOI | MR

[9] Krivonos S., Lechtenfeld O., Polovnikov K., “$\mathcal N=4$ superconformal $n$-particle mechanics via superspace”, Nuclear Phys. B, 817 (2009), 265–283, arXiv: 0812.5062 | DOI | MR | Zbl

[10] Lechtenfeld O., Polovnikov K., “A new class of solutions to the WDVV equation”, Phys. Lett. A, 374 (2010), 504–506, arXiv: 0907.2244 | DOI | MR

[11] Witten E., “On the structure of the topological phase of two-dimensional gravity”, Nuclear Phys. B, 340 (1990), 281–332 | DOI | MR

[12] Dijkgraaf R., Verlinde H., Verlinde E., “Topological strings in $d1$”, Nuclear Phys. B, 352 (1991), 59–86 | DOI | MR

[13] Dubrovin B., “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th//9407018 | DOI | MR | Zbl

[14] Martini R., Gragert P. K. H., “Solutions of WDVV equations in Seiberg–Witten theory from root systems”, J. Nonlinear Math. Phys., 6 (1999), 1–4, arXiv: hep-th/9901166 | DOI | MR | Zbl

[15] Veselov A. P., “Deformations of the root systems and new solutions to generalised WDVV equations”, Phys. Lett. A, 261 (1999), 297–302, arXiv: hep-th/9902142 | DOI | MR | Zbl

[16] Strachan I. A. B., “Weyl groups and elliptic solutions of the WDVV equations”, Adv. Math., 224 (2010), 1801–1838, arXiv: 0802.0388 | DOI | MR | Zbl

[17] Chalykh O. A., Veselov A. P., “Locus configurations and $\vee$-systems”, Phys. Lett. A, 285 (2001), 339–349, arXiv: math-ph/0105003 | DOI | MR | Zbl

[18] Feigin M. V., Veselov A. P., “Logarithmis Frobenius structures and Coxeter discriminants”, Adv. Math., 212 (2007), 143–162, arXiv: math-ph/0512095 | DOI | MR | Zbl

[19] Feigin M. V., Veselov A. P., “On the geometry of $\vee$-systems”, Amer. Math. Soc. Transl. (2), 224, Amer. Math. Soc., Providence, RI, 2008, 111–123, arXiv: 0710.5729 | MR | Zbl

[20] Bonelli G., Matone M., “Nonperturbative relations in $\mathcal N=2$ susy Yang–Mills and WDVV equation”, Phys. Rev. Lett., 77 (1996), 4712–4715, arXiv: hep-th/9605090 | DOI | MR

[21] Marshakov A., Mironov A., Morozov A., “WDVV-like equations in $\mathcal N=2$ SUSY Yang–Mills theory”, Phys. Lett. B, 189 (1996), 43–52, arXiv: ; Marshakov A., Mironov A., Morozov A., “WDVV equations from algebra of forms”, Modern Phys. Lett. A, 12 (1997), 773–788, arXiv: hep-th/9607109hep-th/9701014 | DOI | MR | DOI | MR

[22] Mironov A., “WDVV equations in Seiberg–Witten theory and associative algebras”, Nuclear Phys. B Proc. Suppl., 61A (1998), 177–185, arXiv: hep-th/9704205 | DOI | MR | Zbl

[23] Lechtenfeld O., “WDVV solutions from orthocentric polytopes and Veselov systems”, Problems of Modern Theoretical Physics, eds. V. Epp, Tomsk State Pedagogical University Press, 2008, 265–265, arXiv: 0804.3245

[24] Iohara K., Koga Y., “Central extensions of Lie superalgebras”, Comment. Math. Helv., 76 (2001), 110–154 | DOI | MR | Zbl

[25] Ivanov E., Krivonos S., Leviant V., “Geometric superfield approach to superconformal mechanics”, J. Phys. A: Math. Gen., 22 (1989), 4201–4222 | DOI | MR | Zbl

[26] Ivanov E., Krivonos S., Lechtenfeld O., “$\mathcal N=4$, $d=1$ supermultiplets from nonlinear realizations of $D(2,1;\alpha)$”, Classical Quantum Gravity, 21 (2004), 1031–1050, arXiv: hep-th/0310299 | DOI | MR | Zbl

[27] Delduc F., Ivanov E., “Gauging $\mathcal N=4$ supersymmetric mechanics. II. $(1,4,3)$ models from the $(4,4,0)$ ones”, Nuclear Phys. B, 770 (2007), 179–205, arXiv: hep-th/0611247 | DOI | MR | Zbl

[28] Ivanov E., Lechtenfeld O., “${\mathcal N}{=}4$ supersymmetric mechanics in harmonic superspace”, J. High Energy Phys., 2003:8 (2003), 073, 33 pp., arXiv: hep-th/0307111 | DOI | MR

[29] Bellucci S., Krivonos S., “Supersymmetric mechanics in superspace”, Supersymmetric Mechanics, Lecture Notes in Phys., 698, Springer, Berlin, 2006, 49–96, arXiv: hep-th/0602199 | DOI | MR | Zbl

[30] Voloshin V. I., Introduction to graph and hypergraph theory, Nova Science Publishers, Inc., New York, 2009 | MR | Zbl

[31] Wikipedia entry: Matroid, available at http://en.wikipedia.org/wiki/Matroid

[32] Oxley J., “What is a matroid? Revised version is available at”, Cubo Mat. Educ., 5 (2003), 179–218 https://www.math.lsu.edu/~oxley/survey4.pdf | MR | Zbl

[33] Dukes W. M. B., “On the number of matroids on a finite set”, Sém. Lothar. Combin., 51 (2004), Art. B51g, 12, arXiv: ; see also Dukes' lists of matroids at, math.CO/0411557http://www.stp.dias.ie/~dukes/matroid.html | MR | Zbl

[34] Schwerdtfeger K. W., Über Lösungen zu den WDVV-Gleichungen, Diploma Thesis, unpublished http://www.itp.uni-hannover.de/~lechtenf/Theses/schwerdtfeger.pdf

[35] Schwerdtfeger K.W., A Mathematica notebook with the tools and the computation, available at http://www.itp.uni-hannover.de/~lechtenf/vsystems.nb