Beyond the Gaussian
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian.
Keywords: non-Gaussian integral; renormalized integral; discriminant; cubic equation.
@article{SIGMA_2011_7_a21,
     author = {Kazuyuki Fujii},
     title = {Beyond the {Gaussian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a21/}
}
TY  - JOUR
AU  - Kazuyuki Fujii
TI  - Beyond the Gaussian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a21/
LA  - en
ID  - SIGMA_2011_7_a21
ER  - 
%0 Journal Article
%A Kazuyuki Fujii
%T Beyond the Gaussian
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a21/
%G en
%F SIGMA_2011_7_a21
Kazuyuki Fujii. Beyond the Gaussian. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a21/

[1] Fujii K., Beyond Gaussian: a comment, arXiv: 0905.1363

[2] Morozov A., Shakirov Sh., “Introduction to integral discriminants”, J. High Energy Phys., 2009:12 (2009), 002, 39 pp., arXiv: 0903.2595 | DOI | MR

[3] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge University Press, Cambridge, 1996 | MR | Zbl

[4] Satake I., Linear algebra, Shokabo, Tokyo, 1989 (in Japanese)

[5] Fujii K., Beyond the Gaussian. II. Some applications, in progress

[6] Morozov A., Shakirov Sh., “New and old results in resultant theory”, Theoret. and Math. Phys., 163 (2010), 587–617, arXiv: 0911.5278 | DOI

[7] Dolotin V., Morozov A., Introduction to non-linear algebra, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007, arXiv: hep-th/0609022 | MR | Zbl