@article{SIGMA_2011_7_a20,
author = {Amira Ghorbel},
title = {Harmonic {Analysis} in {One-Parameter} {Metabelian} {Nilmanifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a20/}
}
Amira Ghorbel. Harmonic Analysis in One-Parameter Metabelian Nilmanifolds. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a20/
[1] Bernat P., Conze N., Duflo M., Lévy-Nahas M., Raïs M., Renouard P., Vergne M.,, Représentations des groupes de Lie résolubles, Monographies de la Société Mathématique de France, 4, Dunod, Paris, 1972 | MR | Zbl
[2] Corwin L., Greenleaf F. P., Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples, Cambridge Studies in Advanced Mathematics, 18, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[3] Corwin L., Greenleaf F. P., “Intertwining operators for representations induced from uniform subgroups”, Acta Math., 136 (1976), 275–301 | DOI | MR | Zbl
[4] Corwin L., Greenleaf F. P., “Integral formulas with distribution kernels for irreducible projections in $L^2$ of a nilmanifold”, J. Funct. Anal., 23 (1976), 255–284 | DOI | MR | Zbl
[5] Corwin L., Greenleaf F. P., Penney R., “A canonical formula for the distribution kernels of primary projections in $L^2$ of a nilmanifold”, Comm. Pure Appl. Math., 30 (1977), 355–372 | DOI | MR
[6] Corwin L., Greenleaf F. P., “Character formulas and spectra of compact nilmanifolds”, J. Funct. Anal., 21 (1976), 123–154 | DOI | MR | Zbl
[7] Corwin L., Greenleaf F. P., Penney R., “A general character formula for irreducible projections on $L^2$ of a nilmanifold”, Math. Ann., 225 (1977), 21–32 | DOI | MR | Zbl
[8] Gel'fand I. M., Graev M. I., Piatetskii-Shapiro I. I., Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, Pa, London, Toronto, Ont., 1969 | MR
[9] Ghorbel A., Hamrouni H., “Discrete cocompact subgroups of the five-dimensional connected and simply connected nilpotent Lie groups”, SIGMA, 5 (2009), 020, 17 pp., arXiv: 0902.2977 | DOI | MR | Zbl
[10] Hamrouni H., “Discrete cocompact subgroups of the generic filiform nilpotent Lie groups”, J. Lie Theory, 18 (2008), 1–16 | MR | Zbl
[11] Howe R., “On Frobenius reciprocity for unipotent algebraic group over $Q$”, Amer. J. Math., 93 (1971), 163–172 | DOI | MR | Zbl
[12] Malcev A. I., “On a class of homogeneous spaces”, Amer. Math. Soc. Transl., 39, 1951, 33 | MR
[13] Matsushima Y., “On the discrete subgroups and homogeneous spaces of nilpotent Lie groups”, Nagoya Math. J., 2 (1951), 95–110 | MR | Zbl
[14] Moore C. C., “Decomposition of unitary representations defined by discrete subgroups of nilpotent groups”, Ann. of Math. (2), 82 (1965), 146–182 | DOI | MR | Zbl
[15] Moore C. C., Wolf J., “Square integrable representations of nilpotent groups”, Trans. Amer. Math. Soc., 185 (1973), 445–462 | DOI | MR
[16] Onishchik A. L., Vinberg E. B., Lie groups and Lie algebras., v. II, Encyclopaedia of Mathematical Sciences, 21, Discrete subgroups of Lie groups and cohomologies of Lie groups and Lie algebras, Springer-Verlag, Berlin, 2000 | MR | Zbl
[17] Raghunathan M. S., Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 68, Springer-Verlag, New York, Heidelberg, 1972 | MR | Zbl
[18] Richardson L., “Decomposition of the $L^2$-space of a general compact nilmanifolds”, Amer. J. Math., 93 (1971), 173–190 | DOI | MR