@article{SIGMA_2011_7_a2,
author = {Doojin Hong},
title = {Intertwinors on {Functions} over the {Product} of {Spheres}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a2/}
}
Doojin Hong. Intertwinors on Functions over the Product of Spheres. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a2/
[1] Branson T., “Group representations arising from Lorentz conformal geometry”, J. Funct. Anal., 74 (1987), 199–291 | DOI | MR | Zbl
[2] Branson T., “Harmonic analysis in vector bundles associated to the rotation and spin groups”, J. Funct. Anal., 106 (1992), 314–328 | DOI | MR | Zbl
[3] Branson T., “Sharp inequalities, the functional determinant, and the complementary series”, Trans. Amer. Math. Soc., 347 (1995), 3671–3742 | DOI | MR | Zbl
[4] Branson T., “Nonlinear phenomena in the spectral theory of geometric linear differential operators”, Quantization, Nonlinear Partial Differential Equations, and Operator Algebra (Cambridge, MA, 1994), Proc. Sympos. Pure Math., 59, Amer. Math. Soc., Providence, RI, 1996, 27–65 | MR | Zbl
[5] Branson T., “Stein–Weiss operators and ellipticity”, J. Funct. Anal., 151 (1997), 334–383 | DOI | MR | Zbl
[6] Branson T. P., Hong D., “Spectrum generating on twistor bundle”, Arch. Math. (Brno), 42, suppl. (2006), 169–183, arXiv: math.DG/0606524 | MR | Zbl
[7] Branson T., Hong D., “Translation to bundle operators”, SIGMA, 3 (2007), 102, 14 pp., arXiv: math.DG/0606552 | DOI | MR | Zbl
[8] Branson T., Ólafsson G., Ørsted B., “Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroups”, J. Funct. Anal., 135 (1996), 163–205 | DOI | MR | Zbl
[9] Hong D., “Eigenvalues of Dirac and Rarita–Schwinger operators”, Clifford Algebras (Cookeville, TN, 2002), Prog. Math. Phys., 34, Birkhäuser Boston, Boston, MA, 2004, 201–210 | MR | Zbl
[10] Hong D., Spectra of higher spin operators, Ph.D. Thesis, University of Iowa, 2004 | MR
[11] Ikeda A., Taniguchi Y., “Spectra and eigenforms of the Laplacian on $S^n$ and $P^n(\mathbb{C})$”, Osaka J. Math., 15 (1978), 515–546 | MR | Zbl
[12] Kobayashi T., Ørsted B., “Analysis on the minimal representation of $O(p,q)$. I. Realization via conformal geometry”, Adv. Math., 180 (2003), 486–512, arXiv: math.RT/0111083 | DOI | MR | Zbl