Intertwinors on Functions over the Product of Spheres
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give explicit formulas for the intertwinors on the scalar functions over the product of spheres with the natural pseudo-Riemannian product metric using the spectrum generating technique. As a consequence, this provides another proof of the even order conformally invariant differential operator formulas obtained earlier by T. Branson and the present author.
Keywords: intertwinors; conformally invariant operators.
@article{SIGMA_2011_7_a2,
     author = {Doojin Hong},
     title = {Intertwinors on {Functions} over the {Product} of {Spheres}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a2/}
}
TY  - JOUR
AU  - Doojin Hong
TI  - Intertwinors on Functions over the Product of Spheres
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a2/
LA  - en
ID  - SIGMA_2011_7_a2
ER  - 
%0 Journal Article
%A Doojin Hong
%T Intertwinors on Functions over the Product of Spheres
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a2/
%G en
%F SIGMA_2011_7_a2
Doojin Hong. Intertwinors on Functions over the Product of Spheres. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a2/

[1] Branson T., “Group representations arising from Lorentz conformal geometry”, J. Funct. Anal., 74 (1987), 199–291 | DOI | MR | Zbl

[2] Branson T., “Harmonic analysis in vector bundles associated to the rotation and spin groups”, J. Funct. Anal., 106 (1992), 314–328 | DOI | MR | Zbl

[3] Branson T., “Sharp inequalities, the functional determinant, and the complementary series”, Trans. Amer. Math. Soc., 347 (1995), 3671–3742 | DOI | MR | Zbl

[4] Branson T., “Nonlinear phenomena in the spectral theory of geometric linear differential operators”, Quantization, Nonlinear Partial Differential Equations, and Operator Algebra (Cambridge, MA, 1994), Proc. Sympos. Pure Math., 59, Amer. Math. Soc., Providence, RI, 1996, 27–65 | MR | Zbl

[5] Branson T., “Stein–Weiss operators and ellipticity”, J. Funct. Anal., 151 (1997), 334–383 | DOI | MR | Zbl

[6] Branson T. P., Hong D., “Spectrum generating on twistor bundle”, Arch. Math. (Brno), 42, suppl. (2006), 169–183, arXiv: math.DG/0606524 | MR | Zbl

[7] Branson T., Hong D., “Translation to bundle operators”, SIGMA, 3 (2007), 102, 14 pp., arXiv: math.DG/0606552 | DOI | MR | Zbl

[8] Branson T., Ólafsson G., Ørsted B., “Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroups”, J. Funct. Anal., 135 (1996), 163–205 | DOI | MR | Zbl

[9] Hong D., “Eigenvalues of Dirac and Rarita–Schwinger operators”, Clifford Algebras (Cookeville, TN, 2002), Prog. Math. Phys., 34, Birkhäuser Boston, Boston, MA, 2004, 201–210 | MR | Zbl

[10] Hong D., Spectra of higher spin operators, Ph.D. Thesis, University of Iowa, 2004 | MR

[11] Ikeda A., Taniguchi Y., “Spectra and eigenforms of the Laplacian on $S^n$ and $P^n(\mathbb{C})$”, Osaka J. Math., 15 (1978), 515–546 | MR | Zbl

[12] Kobayashi T., Ørsted B., “Analysis on the minimal representation of $O(p,q)$. I. Realization via conformal geometry”, Adv. Math., 180 (2003), 486–512, arXiv: math.RT/0111083 | DOI | MR | Zbl