A Bochner Theorem for Dunkl Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish an analogue of the Bochner theorem for first order operators of Dunkl type, that is we classify all such operators having polynomial solutions. Under natural conditions it is seen that the only families of orthogonal polynomials in this category are limits of little and big $q$-Jacobi polynomials as $q=-1$.
Keywords: classical orthogonal polynomials; Dunkl operators; Jacobi polynomials; little $q$-Jacobi polynomials; big $q$-Jacobi polynomials.
@article{SIGMA_2011_7_a19,
     author = {Luc Vinet and Alexei Zhedanov},
     title = {A~Bochner {Theorem} for {Dunkl} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a19/}
}
TY  - JOUR
AU  - Luc Vinet
AU  - Alexei Zhedanov
TI  - A Bochner Theorem for Dunkl Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a19/
LA  - en
ID  - SIGMA_2011_7_a19
ER  - 
%0 Journal Article
%A Luc Vinet
%A Alexei Zhedanov
%T A Bochner Theorem for Dunkl Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a19/
%G en
%F SIGMA_2011_7_a19
Luc Vinet; Alexei Zhedanov. A Bochner Theorem for Dunkl Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a19/

[1] Bannai E., Ito T., Algebraic combinatorics., v. I, Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | MR

[2] Belmehdi S., “Generalized Gegenbauer orthogonal polynomials”, J. Comput. Appl. Math., 133 (2001), 195–205 | DOI | MR | Zbl

[3] Ben Cheikh Y., Gaied M., “Characterization of the Dunkl-classical symmetric orthogonal polynomials”, Appl. Math. Comput., 187 (2007), 105–114 | DOI | MR | Zbl

[4] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, London, Paris, 1978 | MR | Zbl

[5] Chouchene F., “Harmonic analysis associated with the Jacobi–Dunkl operator on $]{-}\frac{\pi}{2},\frac{\pi}{2}[$”, J. Comput. Appl. Math., 178 (2005), 75–89 | DOI | MR | Zbl

[6] Dunkl C.F.,, “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl

[7] Everitt W. N., Kwon K. H., Littlejohn L. L., Wellman R., “Orthogonal polynomial solutions of linear ordinary differential equations”, J. Comput. Appl. Math., 133 (2001), 85–109 | DOI | MR | Zbl

[8] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[9] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[10] Koornwinder T., Bouzeffour F., “Nonsymmetric Askey–Wilson polynomials as vector-valued polynomials”, Appl. Anal. (to appear) , arXiv: 1006.1140 | DOI

[11] Littlejohn L. L., Race D., “Symmetric and symmetrisable differential expressions”, Proc. London Math. Soc., 60 (1990), 344–364 | DOI | MR | Zbl

[12] Nevai P., Orthogonal polynomials, Mem. Amer. Math. Soc., 18, no. 213, 1979 | MR

[13] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991 | MR

[14] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396, arXiv: math.CA/9307224 | MR | Zbl

[15] Vinet L., Zhedanov A., “A “missing” family of classical orthogonal polynomials”, J. Phys. A: Math. Theor., 44 (2011), 085201, 16 pp., arXiv: 1011.1669 | DOI | MR | Zbl

[16] Vinet L., Zhedanov A., “A limit $q=-1$ for big $q$-Jacobi polynomials”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1011.1429