@article{SIGMA_2011_7_a19,
author = {Luc Vinet and Alexei Zhedanov},
title = {A~Bochner {Theorem} for {Dunkl} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a19/}
}
Luc Vinet; Alexei Zhedanov. A Bochner Theorem for Dunkl Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a19/
[1] Bannai E., Ito T., Algebraic combinatorics., v. I, Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | MR
[2] Belmehdi S., “Generalized Gegenbauer orthogonal polynomials”, J. Comput. Appl. Math., 133 (2001), 195–205 | DOI | MR | Zbl
[3] Ben Cheikh Y., Gaied M., “Characterization of the Dunkl-classical symmetric orthogonal polynomials”, Appl. Math. Comput., 187 (2007), 105–114 | DOI | MR | Zbl
[4] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, London, Paris, 1978 | MR | Zbl
[5] Chouchene F., “Harmonic analysis associated with the Jacobi–Dunkl operator on $]{-}\frac{\pi}{2},\frac{\pi}{2}[$”, J. Comput. Appl. Math., 178 (2005), 75–89 | DOI | MR | Zbl
[6] Dunkl C.F.,, “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl
[7] Everitt W. N., Kwon K. H., Littlejohn L. L., Wellman R., “Orthogonal polynomial solutions of linear ordinary differential equations”, J. Comput. Appl. Math., 133 (2001), 85–109 | DOI | MR | Zbl
[8] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[9] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[10] Koornwinder T., Bouzeffour F., “Nonsymmetric Askey–Wilson polynomials as vector-valued polynomials”, Appl. Anal. (to appear) , arXiv: 1006.1140 | DOI
[11] Littlejohn L. L., Race D., “Symmetric and symmetrisable differential expressions”, Proc. London Math. Soc., 60 (1990), 344–364 | DOI | MR | Zbl
[12] Nevai P., Orthogonal polynomials, Mem. Amer. Math. Soc., 18, no. 213, 1979 | MR
[13] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991 | MR
[14] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396, arXiv: math.CA/9307224 | MR | Zbl
[15] Vinet L., Zhedanov A., “A “missing” family of classical orthogonal polynomials”, J. Phys. A: Math. Theor., 44 (2011), 085201, 16 pp., arXiv: 1011.1669 | DOI | MR | Zbl
[16] Vinet L., Zhedanov A., “A limit $q=-1$ for big $q$-Jacobi polynomials”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1011.1429