@article{SIGMA_2011_7_a17,
author = {Miloslav Znojil},
title = {Planarizable {Supersymmetric} {Quantum} {Toboggans}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a17/}
}
Miloslav Znojil. Planarizable Supersymmetric Quantum Toboggans. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a17/
[1] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385, arXiv: hep-th/9405029 | DOI | MR
[2] Jevicki A., Rodrigues J. P., “Singular potentials and supersymmetry breaking”, Phys. Lett. B, 146 (1984), 55–58 | DOI | MR
[3] Junker G., Supersymmetric methods in quantum and statistical physics, Text and Monographs in Physics, Springer-Verlag, Berlin, 1996 ; Bagchi B. K., Supersymmetry in quantum and classical mechanics, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 116, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | MR | Zbl
[4] Das A., Pernice S. A., “Supersymmetry and singular potentials”, Nuclear Phys. B, 561 (1999), 357–384, arXiv: hep-th/9905135 | DOI | MR | Zbl
[5] Buslaev V., Grecchi V., “Equivalence of unstable anharmonic oscillators and double wells”, J. Phys. A: Math. Gen., 26 (1993), 5541–5549 ; Andrianov A. A., Ioffe M. V., Cannata F., Dedonder J.-P., “SUSY quantum mechanics with complex superpotentials and real energy spectra”, Internat. J. Modern Phys. A, 14 (1999), 2675–2688, arXiv: ; Cannata F., Junker G., Trost J., “Schrödinger operators with complex potential but real spectrum”, Phys. Lett. A, 246 (1998), 219–226, arXiv: ; Bender C. M., Boettcher S., Meisinger P. M., “$\mathcal{PT}$-symmetric quantum mechanics”, J. Math. Phys., 40 (1999), 2201–2229, arXiv: quant-ph/9806019quant-ph/9805085quant-ph/9809072 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[6] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246, arXiv: physics/9712001 | DOI | MR | Zbl
[7] Znojil M., Conservation of pseudo-norm in $\mathcal{PT}$ symmetric quantum mechanics, arXiv: math-ph/0104012 | MR
[8] Mostafazadeh A., “Pseudo-Hermiticity versus $\mathcal{PT}$ Symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43 (2002), 205–214, arXiv: math-ph/0107001 | DOI | MR | Zbl
[9] Bender C. M., Brody D. C., Jones H. F., “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89 (2002), 270402, 4 pp., arXiv: ; Erratum: Phys. Rev. Lett., 92 (2004), 119902, 1 pp. quant-ph/0208076 | DOI | MR | DOI | MR
[10] Dorey P., Dunning C., Tateo R., “Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A: Math. Gen., 34 (2001), 5679–5704, arXiv: hep-th/0103051 | DOI | MR | Zbl
[11] Znojil M., “Comment on: “Supersymmetry and singular potentials” by Das and Pernice”, Nuclear Phys. B, 561 (1999), 357–384 ; Nuclear Phys. B, 662 (2003), 554–562, arXiv: hep-th/0209262 | DOI | MR | MR | Zbl
[12] Dorey P., Dunning C., Tateo R., “The ODE/IM correspondence”, J. Phys. A: Math. Theor., 40 (2007), R205–R283, arXiv: hep-th/0703066 | DOI | MR | Zbl
[13] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018, arXiv: hep-th/0703096 | DOI | MR
[14] Mostafazadeh A., “Pseudo-Hermitian representation of quantum mechanics”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1191–1306, arXiv: 0810.5643 | DOI | MR | Zbl
[15] Znojil M., “Three-Hilbert-space formulation of quantum mechanics”, SIGMA, 5 (2009), 001, 19 pp., arXiv: 0901.0700 | DOI | MR | Zbl
[16] Znojil M., “$\mathcal{PT}$-symmetric regularizations in supersymmetric quantum mechanics”, J. Phys. A: Math. Gen., 37 (2004), 10209–10222, arXiv: hep-th/0404145 | DOI | MR | Zbl
[17] Znojil M., “$\mathcal{PT}$-symmetric quantum toboggans”, Phys. Lett. A, 342 (2005), 36–47, arXiv: quant-ph/0502041 | DOI | MR | Zbl
[18] Fernández F. M., Guardiola R., Ros J., Znojil M., “A family of complex potentials with real spectrum”, J. Phys. A: Math. Gen., 32 (1999), 3105–3116, arXiv: ; Znojil M., “Spiked potentials and quantum toboggans”, J. Phys. A: Math. Gen., 39 (2006), 13325–13336, arXiv: ; Novotný J. quant-ph/9812026quant-ph/0606166http://demonstrations.wolfram.com/TheQuantumTobogganicPaths/ | DOI | MR | Zbl | DOI | MR | Zbl
[19] Znojil M., Jakubský V., “Supersymmetric quantum mechanics living on topologically nontrivial Riemann surfaces”, Pramana J. Phys., 73 (2009), 397–404, arXiv: 0904.2294 | DOI
[20] Correa F., Jakubský V., Nieto L. M., Plyushchay M. S., “Self-isospectrality, special supersymmetry, and their effect on the band structure”, Phys. Rev. Lett., 101 (2008), 030403, 4 pp., arXiv: ; Correa F., Jakubský V., Plyushchay M. S., “Finite-gap systems, tri-supersymmetry and self-isospectrality”, J. Phys. A: Math. Theor., 41 (2008), 485303, 35 pp., arXiv: ; Siegl P., “Supersymmetric quasi-Hermitian Hamiltonians with point interactions on a loop”, J. Phys. A: Math. Theor., 41 (2008), 244025, 11 pp. ; Jakubský V., Nieto L. M., Plyushchay M. S., “Klein tunneling in carbon nanostructures: a free-particle dynamics in disguise”, Phys. Rev. D, 63 (2011), 047702, 4 pp., arXiv: 0801.16710806.16141010.0569 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI
[21] Andrianov A. A., Cannata F., Sokolov A. V., “Non-linear supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians. I. General properties”, Nuclear Phys. B, 773 (2007), 107–136, arXiv: math-ph/0610024 | DOI | MR | Zbl
[22] Znojil M., Cannata F., Bagchi B., Roychoudhury R., “Supersymmetry without hermiticity within $\mathcal{PT}$ symmetric quantum mechanics”, Phys. Lett. B, 483 (2000), 284–289, arXiv: hep-th/0003277 | DOI | MR | Zbl
[23] Znojil M., “$\mathcal{PT}$ symmetrized SUSY quantum mechanics”, Czechoslovak J. Phys., 51 (2001), 420–428, arXiv: ; Znojil M., “$\mathcal{PT}$-symmetry and supersymmetry”, GROUP 24: Physical and Mathematical Aspects of Symmetries (Paris, July 15–20, 2002), IOP Publishing, Bristol, 2003, 629–632, arXiv: hep-ph/0101038hep-th/0209062 | DOI | MR
[24] Znojil M., “Non-Hermitian SUSY and singular, $\mathcal{PT}$-symmetrized oscillators”, J. Phys. A: Math. Gen., 35 (2002), 2341–2352, arXiv: hep-th/0201056 | DOI | MR | Zbl
[25] Levai G., Znojil M., “The interplay of supersymmetry and $\mathcal PT$ symmetry in quantum mechanics: a case study for the Scarf II potential”, J. Phys. A: Math. Gen., 35 (2002), 8793–8804, arXiv: ; Sinha A., Roy P., “Generation of exactly solvable non-Hermitian potentials with real energies”, Czechoslovak J. Phys., 54 (2004), 129–138, arXiv: quant-ph/0206013quant-ph/0312089 | DOI | MR | Zbl | DOI | MR
[26] Caliceti E., Graffi S., Maioli M., “Perturbation theory of odd anharmonic oscillators”, Comm. Math. Phys., 75 (1980), 51–66 ; Sibuya Y., Global theory of second order linear differential equation with polynomial coefficient, North Holland, Amsterdam, 1975 ; Fernández F. M., Guardiola R., Ros J., Znojil M., “Strong-coupling expansions for the $\mathcal{PT}$-symmetric oscillators $V(r)=aix+b(ix)^2+c(ix)^3$”, J. Phys. A: Math. Gen., 31 (1998), 10105–10112 | DOI | MR | Zbl | Zbl | DOI | Zbl
[27] Znojil M., “$\mathcal{PT}$-symmetric harmonic oscillators”, Phys. Lett. A, 259 (1999), 220–223 | DOI | MR | Zbl
[28] Znojil M., “$\mathcal{PT}$-symmetric square well”, Phys. Lett. A, 285 (2001), 7–10, arXiv: ; Quesne C., Bagchi B., Mallik S., Bíla H., Jakubský V., Znojil M., “$\mathcal{PT}$-supersymmetric partner of a short-range square well”, Czechoslovak J. Phys., 55 (2005), 1161–1166, arXiv: quant-ph/0101131quant-ph/0507246 | DOI | MR | Zbl | DOI | MR
[29] Albeverio S., Fei S.-M., Kurasov P., “Gauge fields, point interactions and few-body problems in one dimension”, Rep. Math. Phys., 53 (2004), 363–370, arXiv: quant-ph/0406158 | DOI | MR | Zbl
[30] Znojil M., Tater M., “Complex Calogero model with real energies”, J. Phys. A: Math. Gen., 34 (2001), 1793–1803, arXiv: ; Znojil M., “Low-lying spectra in anharmonic three-body oscillators with a strong short-range repulsion”, J. Phys. A: Math. Gen., 36 (2003), 9929–9941, arXiv: ; Fring A., Smith M., “Antilinear deformations of Coxeter groups, an application to Calogero models”, J. Phys. A: Math. Theor., 43 (2010), 325201, 28 pp., arXiv: quant-ph/0010087quant-ph/03072391004.0916 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[31] Znojil M., “Quantum knots”, Phys. Lett. A, 372 (2008), 3591–3596, arXiv: 0802.1318 | DOI | MR | Zbl
[32] Znojil M., “Quantum toboggans: models exhibiting a multisheeted $\mathcal{PT}$ symmetry”, J. Phys. Conf. Ser., 128 (2008), 012046, 12 pp., arXiv: 0710.1485 | DOI
[33] Wessels G. J. C., A numerical and analytical investigation into non-Hermitian Hamiltonians, Master Thesis, University of Stellenbosch, 2008
[34] Bíla H., “Spectra of $\mathcal{PT}$-symmetric Hamiltonians on tobogganic contours”, Pramana J. Phys., 73 (2010), 307–314, arXiv: 0905.1498
[35] Dorey P., Millican-Slater A., Tateo R., “Beyond the WKB approximation in $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A: Math. Gen., 38 (2005), 1305–1331, arXiv: hep-th/0410013 | DOI | MR | Zbl
[36] Znojil M., “Quantum toboggans with two branch points”, Phys. Lett. A, 372 (2008), 584–590, arXiv: 0708.0087 | DOI | MR | Zbl
[37] Znojil M., “Classification of oscillators in the Hessenberg-matrix representation”, J. Phys. A: Math. Gen., 27 (1994), 4945–4968 | DOI | MR | Zbl
[38] Znojil M., Siegl P., Levai G., “Asymptotically vanishing $\mathcal{PT}$-symmetric potentials and negative-mass Schrödinger equations”, Phys. Lett. A, 373 (2009), 1921–1924, arXiv: 0903.5468 | DOI | MR
[39] Scholtz F. G., Geyer H. B., Hahne F. J. W., “Quasi-Hermitian operators in quantum mechanics and the variational principle”, Ann. Physics, 213 (1992), 74–101 | DOI | MR | Zbl
[40] Znojil M., “Topology-controlled spectra of imaginary cubic oscillators in the large-$L$ approach”, Phys. Lett. A, 374 (2010), 807–812, arXiv: 0912.1176 | DOI
[41] Znojil M., Gemperle F., Mustafa O., “Asymptotic solvability of an imaginary cubic oscillator with spikes”, J. Phys. A: Math. Gen., 35 (2002), 5781–5793, arXiv: hep-th/0205181 | DOI | MR | Zbl
[42] Znojil M., “Identification of observables in quantum toboggans”, J. Phys. A: Math. Theor., 41 (2008), 215304, 14 pp., arXiv: ; Znojil M., Geyer H. B., “Sturm–Schrödinger equations: formula for metric”, Pramana J. Phys., 73 (2010), 299–306, arXiv: 0803.04030904.2293 | DOI | MR | Zbl | DOI
[43] Znojil M., “Re-establishing supersymmetry between harmonic oscillators in $D\neq1$ dimensions”, Rend. Circ. Mat. Palermo (2) Suppl., 2003, no. 71, 199–207, arXiv: hep-th/0203252 | MR | Zbl
[44] Dieudonné J., “Quasi-Hermitian operators”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Pergamon, Oxford, 1961, 115–122 ; Williams J. P., “Operators similar to their adjoints”, Proc. Amer. Math. Soc., 20 (1969), 121–123 | MR | DOI | MR | Zbl
[45] Langer H., Tretter Ch., “A Krein space approach to $\mathcal{PT}$-symmetry”, Czechoslovak J. Phys., 54 (2004), 1113–1120 | DOI | MR | Zbl
[46] Lévai G., Znojil M., “Systematic search for $\mathcal{PT}$-symmetric potentials with real energy spectra”, J. Phys. A: Math. Gen., 33 (2000), 7165–7180 | DOI | MR | Zbl
[47] Günther U., Langer H., Tretter Ch., “On the spectrum of the magnetohydrodynamic mean-field $\alpha^2$-dynamo operator”, SIAM J. Math. Anal., 42 (2010), 1413–1447, arXiv: ; Znojil M., Günther U., “Dynamics of charged fluids and $1/\ell$ perturbation expansions”, J. Phys. A: Math. Theor., 40 (2007), 7375–7388, arXiv: 1004.0231math-ph/0610055 | DOI | MR | DOI | MR | Zbl
[48] Rüter C. E., Makris K. G., El-Ganainy R., Christodoulides D. N., Segev D. N., Kip D., “Observation of parity-time symmetry in optics”, Nature Phys., 6 (2010), 192–195 ; Berry M. V., “Optical lattices with $\mathcal{PT}$ symmetry are not transparent”, J. Phys. A: Math. Theor., 41 (2008), 244007, 7 pp. ; Makris K. G., El-Ganainy R., Christodoulides D. N., Musslimani Z. H., “Beam dynamics in $\mathcal{PT}$ symmetric optical lattices”, Phys. Rev. Lett., 100 (2008), 103904, 4 pp. | DOI | DOI | MR | Zbl | DOI
[49] Hilgevoord J., “Time in quantum mechanics”, Amer. J. Phys., 70 (2002), 301–306 | DOI
[50] Bender C. M., Turbiner A., “Analytic continuation of eigenvalue problems”, Phys. Lett. A, 173 (1993), 442–446 | DOI | MR
[51] Mostafazadeh A., “Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential”, J. Phys. A: Math. Gen., 39 (2006), 10171–10188, arXiv: quant-ph/0508195 | DOI | MR | Zbl
[52] Jones H. F., Mateo J., “Equivalent Hermitian Hamiltonian for the non-Hermitian $-x^4$ potential”, Phys. Rev. D, 73 (2006), 085002, 4 pp., arXiv: ; Bagchi B., Fring A., “Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems”, Phys. Lett. A, 373 (2009), 4307–4310, arXiv: quant-ph/06011880907.5354 | DOI | MR | DOI | MR