Orthogonality Relations for Multivariate Krawtchouk Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The orthogonality relations of multivariate Krawtchouk polynomials are discussed. In case of two variables, the necessary and sufficient conditions of orthogonality is given by Grünbaum and Rahman in [SIGMA 6 (2010), 090, 12 pages]. In this study, a simple proof of the necessary and sufficient condition of orthogonality is given for a general case.
Keywords: multivariate orthogonal polynomial; hypergeometric function.
@article{SIGMA_2011_7_a16,
     author = {Hiroshi Mizukawa},
     title = {Orthogonality {Relations} for {Multivariate} {Krawtchouk} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a16/}
}
TY  - JOUR
AU  - Hiroshi Mizukawa
TI  - Orthogonality Relations for Multivariate Krawtchouk Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a16/
LA  - en
ID  - SIGMA_2011_7_a16
ER  - 
%0 Journal Article
%A Hiroshi Mizukawa
%T Orthogonality Relations for Multivariate Krawtchouk Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a16/
%G en
%F SIGMA_2011_7_a16
Hiroshi Mizukawa. Orthogonality Relations for Multivariate Krawtchouk Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a16/

[1] Griffiths R. C., “Orthogonal polynomials on the multinomial distribution”, Austral. J. Statist., 13 (1971), 27–35 | DOI | MR | Zbl

[2] Grünbaum F. A., Rahman M., “On a family of 2-variable orthogonal Krawtchouk polynomials”, SIGMA, 6 (2010), 090, 12 pp., arXiv: 1007.4327 | DOI | MR

[3] Mizukawa H., “Zonal spherical functions on the complex reflection groups and $(m+1,n+1)$-hypergeometric functions”, Adv. Math., 184 (2004), 1–17 | DOI | MR | Zbl

[4] Mizukawa H., Tanaka H., “$(n+1,m+1)$-hypergeometric functions associated to character algebras”, Proc. Amer. Math. Soc., 132 (2004), 2613–2618 | DOI | MR | Zbl