On the Complex Symmetric and Skew-Symmetric Operators with a Simple Spectrum
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we obtain necessary and sufficient conditions for a linear bounded operator in a Hilbert space $H$ to have a three-diagonal complex symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in $H$. It is shown that a set of all such operators is a proper subset of a set of all complex symmetric operators with a simple spectrum. Similar necessary and sufficient conditions are obtained for a linear bounded operator in $H$ to have a three-diagonal complex skew-symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in $H$.
Keywords: complex symmetric operator; complex skew-symmetric operator; cyclic operator; simple spectrum.
@article{SIGMA_2011_7_a15,
     author = {Sergey M. Zagorodnyuk},
     title = {On the {Complex} {Symmetric} and {Skew-Symmetric} {Operators} with {a~Simple} {Spectrum}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a15/}
}
TY  - JOUR
AU  - Sergey M. Zagorodnyuk
TI  - On the Complex Symmetric and Skew-Symmetric Operators with a Simple Spectrum
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a15/
LA  - en
ID  - SIGMA_2011_7_a15
ER  - 
%0 Journal Article
%A Sergey M. Zagorodnyuk
%T On the Complex Symmetric and Skew-Symmetric Operators with a Simple Spectrum
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a15/
%G en
%F SIGMA_2011_7_a15
Sergey M. Zagorodnyuk. On the Complex Symmetric and Skew-Symmetric Operators with a Simple Spectrum. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a15/

[1] Garcia S. R., Putinar M., “Complex symmetric operators and applications”, Trans. Amer. Math. Soc., 358 (2006), 1285–1315 | DOI | MR | Zbl

[2] Garcia S. R., Putinar M., “Complex symmetric operators and applications. II”, Trans. Amer. Math. Soc., 359 (2007), 3913–3931 | DOI | MR | Zbl

[3] Zagorodnyuk S. M., “On a $J$-polar decomposition of a bounded operator and matrices of $J$-symmetric and $J$-skew-symmetric operators”, Banach J. Math. Anal., 4:2 (2010), 11–36 | MR | Zbl

[4] Akhiezer N. I., Classical moment problem, Fizmatlit, Moscow, 1961 (in Russian)

[5] Geronimus Ya. L., Orthogonal polynomials on the circle and on an interval., Estimates, asymptotic formulas, orthogonal series, Fizmatlit, Moscow, 1958 (in Russian)

[6] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, London, Paris, 1978 | MR | Zbl

[7] Math. Notes, 23 (1978), 130–136 | DOI | MR

[8] Zagorodnyuk S. M., “Direct and inverse spectral problems for $(2N+1)$-diagonal, complex, symmetric, non-Hermitian matrices”, Serdica Math. J., 30 (2004), 471–482 | MR | Zbl

[9] Zagorodnyuk S. M., “Integral representations for spectral functions of some nonself-adjoint Jacobi matrices”, Methods Funct. Anal. Topology, 15 (2009), 91–100 | MR | Zbl

[10] Zagorodnyuk S. M., “The direct and inverse spectral problems for $(2N+1)$-diagonal complex transposition-antisymmetric matrices”, Methods Funct. Anal. Topology, 14 (2008), 124–131 | MR | Zbl