@article{SIGMA_2011_7_a15,
author = {Sergey M. Zagorodnyuk},
title = {On the {Complex} {Symmetric} and {Skew-Symmetric} {Operators} with {a~Simple} {Spectrum}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a15/}
}
Sergey M. Zagorodnyuk. On the Complex Symmetric and Skew-Symmetric Operators with a Simple Spectrum. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a15/
[1] Garcia S. R., Putinar M., “Complex symmetric operators and applications”, Trans. Amer. Math. Soc., 358 (2006), 1285–1315 | DOI | MR | Zbl
[2] Garcia S. R., Putinar M., “Complex symmetric operators and applications. II”, Trans. Amer. Math. Soc., 359 (2007), 3913–3931 | DOI | MR | Zbl
[3] Zagorodnyuk S. M., “On a $J$-polar decomposition of a bounded operator and matrices of $J$-symmetric and $J$-skew-symmetric operators”, Banach J. Math. Anal., 4:2 (2010), 11–36 | MR | Zbl
[4] Akhiezer N. I., Classical moment problem, Fizmatlit, Moscow, 1961 (in Russian)
[5] Geronimus Ya. L., Orthogonal polynomials on the circle and on an interval., Estimates, asymptotic formulas, orthogonal series, Fizmatlit, Moscow, 1958 (in Russian)
[6] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, London, Paris, 1978 | MR | Zbl
[7] Math. Notes, 23 (1978), 130–136 | DOI | MR
[8] Zagorodnyuk S. M., “Direct and inverse spectral problems for $(2N+1)$-diagonal, complex, symmetric, non-Hermitian matrices”, Serdica Math. J., 30 (2004), 471–482 | MR | Zbl
[9] Zagorodnyuk S. M., “Integral representations for spectral functions of some nonself-adjoint Jacobi matrices”, Methods Funct. Anal. Topology, 15 (2009), 91–100 | MR | Zbl
[10] Zagorodnyuk S. M., “The direct and inverse spectral problems for $(2N+1)$-diagonal complex transposition-antisymmetric matrices”, Methods Funct. Anal. Topology, 14 (2008), 124–131 | MR | Zbl