Harmonic Superfields in $\mathcal N=4$ Supersymmetric Quantum Mechanics
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a brief survey of applications of the harmonic superspace methods to the models of $\mathcal N=4$ supersymmetric quantum mechanics (SQM). The main focus is on a recent progress in constructing SQM models with couplings to the background non-Abelian gauge fields. Besides reviewing and systemizing the relevant results, we present some new examples and make clarifying comments.
Keywords: supersymmetry; harmonic superspace; mechanics.
@article{SIGMA_2011_7_a14,
     author = {Evgeny A. Ivanov},
     title = {Harmonic {Superfields} in $\mathcal N=4$ {Supersymmetric} {Quantum} {Mechanics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a14/}
}
TY  - JOUR
AU  - Evgeny A. Ivanov
TI  - Harmonic Superfields in $\mathcal N=4$ Supersymmetric Quantum Mechanics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a14/
LA  - en
ID  - SIGMA_2011_7_a14
ER  - 
%0 Journal Article
%A Evgeny A. Ivanov
%T Harmonic Superfields in $\mathcal N=4$ Supersymmetric Quantum Mechanics
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a14/
%G en
%F SIGMA_2011_7_a14
Evgeny A. Ivanov. Harmonic Superfields in $\mathcal N=4$ Supersymmetric Quantum Mechanics. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a14/

[1] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 | DOI

[2] Smilga A. V., “Low-dimensional sisters of Seiberg–Witten effective theory”, From Fields to Strings: Circumnavigating Theoretical Physics, v. 1, eds. M. Shifman et al., World Sci. Publ., Singapore, 2005, 523–528, arXiv: hep-th/0403294 | MR

[3] Wyllard N., “(Super)conformal many-body quantum mechanics with extended supersymmetry”, J. Math. Phys., 41 (2000), 2826–2838, arXiv: ; Galajinsky A., Polovnikov K., Lechtenfeld O., “$\mathcal N=4$ superconformal Calogero models”, J. High Energy Phys., 2007:11 (2007), 008, 23 pp., arXiv: ; Krivonos S., Lechtenfeld O., Polovnikov K. $\mathcal N=4$ superconformal $n$-particle mechanics via superspace, Nuclear Phys. B, 817 (2009), 265–283, arXiv: hep-th/99101600708.10750812.5062 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[4] Fedoruk S., Ivanov E., Lechtenfeld O., “Supersymmetric Calogero models by gauging”, Phys. Rev. D, 79 (2009), 105015, 6 pp. | DOI | MR

[5] Ivanov E., Mezincescu L., Townsend P. K., “Planar super-Landau models”, J. High Energy Phys., 2006:1 (2006), 143, 23 pp., arXiv: ; Curtright T., Mezincescu L., Ivanov E., Townsend P. K., “Planar super-Landau models revisited”, J. High Energy Phys., 2007:4 (2007), 020, 25 pp., arXiv: hep-th/0510019hep-th/0612300 | DOI | MR | DOI | MR

[6] Gates S. J., Jr., Rana L., “Ultra-multiplets: a new representation of rigid $2D$ $\mathcal N=8$ supersymmetry”, Phys. Lett. B, 342 (1995), 132–137, arXiv: ; Pashnev A., Toppan F., “On the classification of $N$-extended supersymmetric quantum mechanical systems”, J. Math. Phys., 42 (2001), 5257–5271, arXiv: hep-th/9410150hep-th/0010135 | DOI | MR | DOI | MR | Zbl

[7] Ivanov E., Krivonos S., Lechtenfeld O., “$\mathcal N=4$, $d=1$ supermultiplets from nonlinear realizations of $D(2,1;\alpha)$”, Classical Quantum Gravity, 21 (2004), 1031–1050, arXiv: hep-th/0310299 | DOI | MR | Zbl

[8] Ivanov E., Lechtenfeld O., “$\mathcal N=4$ supersymmetric mechanics in harmonic superspace”, J. High Energy Phys., 2003:9 (2003), 073, 33 pp., arXiv: hep-th/0307111 | DOI | MR

[9] Galperin A., Ivanov E., Ogievetsky V., Sokatchev E., “Harmonic superspace: key to $\mathcal N=2$ supersymmetric theories”, JETP Lett., 40 (1984), 912–916

[10] Galperin A. S., Ivanov E. A., Ogievetsky V. I., Sokatchev E. S., Harmonic superspace, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[11] Ivanov E. A., “Supersymmetry in superspace: 35 years of the research activity in LTP”, Phys. Part. Nuclei, 40 (2009), 291–306, arXiv: hep-th/0609176 | DOI

[12] Delduc F., Ivanov E., “Gauging $\mathcal N=4$ supersymmetric mechanics”, Nuclear Phys. B, 753 (2006), 211–241, arXiv: hep-th/0605211 | DOI | MR | Zbl

[13] Delduc F., Ivanov E., “Gauging ${\mathcal N}=4$ supersymmetric mechanics. II. $(1,4,3)$ models from the $(4,4,0)$ ones”, Nuclear Phys. B, 770 (2007), 179–205, arXiv: hep-th/0611247 | DOI | MR | Zbl

[14] Delduc F., Ivanov E., “The common origin of linear and nonlinear chiral multiplets in ${\mathcal N}=4$ mechanics”, Nuclear Phys. B, 787 (2007), 176–197, arXiv: 0706.0706 | DOI | MR | Zbl

[15] Sonner J., Tong D., “Berry phase and supersymmetry”, J. High Energy Phys., 2009:1 (2009), 063, 9 pp., arXiv: 0810.1280 | DOI | MR

[16] Gonzales M., Kuznetsova Z., Nersessian A., Toppan F., Yeghikyan V., “Second Hopf map and supersymmetric mechanics with a Yang monopole”, Phys. Rev. D, 80 (2009), 025022, 13 pp., arXiv: 0902.2682 | DOI | MR

[17] Dunne G. V., Jackiw R., Trugenberger C. A., ““Topological” (Chern–Simons) quantum mechanics”, Phys. Rev. D, 14 (1990), 661–666 | DOI | MR

[18] Feher L., Horváthy P. A., O'Raifeartaigh L., “Applications of chitral supersymetry to spin fields in selfdual backgrounds”, Internat. J. Modern Phys. A, 4 (1989), 5277–5285, arXiv: 0903.2920 | DOI | MR

[19] Konyushikhin M., Smilga A. V., “Self-duality and supersymmetry”, Phys. Lett. B, 689 (2010), 95–100, arXiv: 0910.5162 | DOI | MR

[20] Ivanov E. A., Konyushikhin M. A., Smilga A. V., “SQM with non-Abelian self-dual fields: harmonic superspace description”, J. High Energy Phys., 2010:5 (2010), 033, 14 pp., arXiv: 0912.3289 | DOI | MR

[21] Ivanov E., Konyushikhin M., “$\mathcal N=4$, $3D$ supersymmetric quantum mechnics in non-Abelian monopole background”, Phys. Rev. D, 82 (2010), 085014, 8 pp., arXiv: 1004.4597 | DOI

[22] Bellucci S., Krivonos S., Sutulin A., “Three dimensional $\mathcal N=4$ supersymmetric mechanics with Wu–Yang monopole”, Phys. Rev. D, 81 (2010), 105026, 9 pp., arXiv: 0911.3257 | DOI | MR

[23] Krivonos S., Lechtenfeld O., Sutulin A., “${\mathcal N}=4$ supersymmetry and the Belavin–Polyakov–Shvarts–Tyupkin instanton”, Phys. Rev. D, 81 (2010), 085021, 7 pp., arXiv: 1001.2659 | DOI | MR

[24] Kirchberg A., Länge J. D., Wipf A., “Extended supersymmetries and the Dirac operator”, Ann. Physics, 315 (2005), 467–487, arXiv: hep-th/0401134 | DOI | MR | Zbl

[25] Ivanov E., Niederle J., “Bi-harmonic superspace for $\mathcal N=4$ mechanics”, Phys. Rev. D, 80 (2009), 065027, 23 pp., arXiv: 0905.3770 | DOI | MR

[26] Rocek M., Verlinde E. P., “Duality, quotients, and currents”, Nuclear Phys. B, 373 (1992), 630–646, arXiv: hep-th/9110053 | DOI | MR

[27] Galperin A., Ivanov E., Ogievetsky V., Sokatchev E., “Gauge field geometry from complex and harmonic analyticities. I. Kähler and self-dual Yang–Mills cases”, Ann. Physics, 185 (1988), 1–21 | DOI | MR | Zbl

[28] Yang C. N., “Generalization of Dirac's monopole to ${\rm SU}_2$ gauge fields”, J. Math. Phys., 19 (1978), 320–328 | DOI | MR

[29] Polychronakos A. P., “Integrable systems from gauged matrix models”, Phys. Lett. B, 266 (1991), 29–34 | DOI | MR | Zbl

[30] de Crombrugghe M., Rittenberg V., “Supersymmetric quantum mechanics”, Ann. Physics, 151 (1983), 99–126 | DOI | MR

[31] Wu T. T., Yang C. N., “Some solutions of the classical isotopic gauge field equations”, Properties of Matter Under Unusual Conditions, eds. H. Mark and S. Fernbach, Interscience, New York, 1969, 345–349