Schrödinger-like Dilaton Gravity
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate possibilities for a Schrödinger-like gravity with the dynamical critical exponent $z=2$, where the action only contains the first-order time derivative. The Horava gravity always admits such a relevant deformation because the full ($d+1$) dimensional diffeomorphism of the Einstein gravity is replaced by the foliation preserving diffeomorphism. The dynamics is locally trivial or topological in the pure gravity case, but we can construct a dynamical field theory with a $z=2$ dispersion relation by introducing a dilaton degree of freedom. Our model provides a classical starting point for the possible quantum dilaton gravity which may be applied to a membrane quantization.
Keywords: non-relativistic gravity; membrane quantization.
@article{SIGMA_2011_7_a13,
     author = {Yu Nakayama},
     title = {Schr\"odinger-like {Dilaton} {Gravity}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a13/}
}
TY  - JOUR
AU  - Yu Nakayama
TI  - Schrödinger-like Dilaton Gravity
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a13/
LA  - en
ID  - SIGMA_2011_7_a13
ER  - 
%0 Journal Article
%A Yu Nakayama
%T Schrödinger-like Dilaton Gravity
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a13/
%G en
%F SIGMA_2011_7_a13
Yu Nakayama. Schrödinger-like Dilaton Gravity. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a13/

[1] Horava P., “Membranes at quantum criticality”, J. High Energy Phys., 2009:3 (2009), 020, 34 pp., arXiv: 0812.4287 | DOI | MR

[2] Horava P., “Quantum gravity at a Lifshitz point”, Phys. Rev. D, 79 (2009), 084008, 15 pp., arXiv: 0901.3775 | DOI | MR

[3] Horava P., “Spectral dimension of the Universe in quantum gravity at a Lifshitz point”, Phys. Rev. Lett., 102 (2009), 161301, 4 pp., arXiv: 0902.3657 | DOI | MR

[4] Hagen C.R., “Scale and conformal transformations in Galilean-covariant field theory”, Phys. Rev. D, 5 (1972), 377–388 | DOI

[5] Niederer U., “The maximal kinematical invariance group of the free Schrödinger equation”, Helv. Phys. Acta, 45 (1972), 802–810 | MR

[6] Li M., Pang Y., “A trouble with Horava–Lifshitz gravity”, J. High Energy Phys., 2009:8 (2009), 015, 12 pp., arXiv: 0905.2751 | DOI | MR

[7] Mukohyama S., “Dark matter as integration constant in Horava–Lifshitz gravity”, Phys. Rev. D, 80 (2009), 064005, 6 pp., arXiv: 0905.3563 | DOI

[8] Blas D., Pujolas O., Sibiryakov S., “On the extra mode and inconsistency of Horava gravity”, J. High Energy Phys., 2009:10 (2009), 029, 29 pp., arXiv: 0906.3046 | DOI | MR

[9] Henneaux M., Kleinschmidt A., Gomez G.L., “A dynamical inconsistency of Horava gravity”, Phys. Rev. D, 81 (2010), 064002, 11 pp., arXiv: 0912.0399 | DOI | MR

[10] Charmousis C., Niz G., Padilla A., Saffin P. M., “Strong coupling in Horava gravity”, J. High Energy Phys., 2009:8 (2009), 070, 17 pp., arXiv: 0905.2579 | DOI | MR

[11] Nakayama Y., “Liouville field theory: a decade after the revolution”, Internat. J. Modern Phys. A, 19 (2004), 2771–2930, arXiv: hep-th/0402009 | DOI | MR | Zbl

[12] Jackiw R., Pi S.Y., “Classical and quantal nonrelativistic Chern–Simons theory”, Phys. Rev. D, 42 (1990), 3500–3513 ; Erratum: Phys. Rev. D, 48 (1993), 3929–3929 | DOI | MR | DOI | MR

[13] Nakayama Y., Sakaguchi M., Yoshida K., “Non-relativistic M2-brane gauge theory and new superconformal algebra”, J. High Energy Phys., 2009:4 (2009), 096, 21 pp., arXiv: 0902.2204 | DOI | MR

[14] Lee K.-M., Lee S., Lee S., “Non-relativistic superconformal M2-brane theory”, J. High Energy Phys., 2009:9 (2009), 030, 32 pp., arXiv: 0902.3857 | DOI

[15] Nakayama Y., Rey S.-J., “Observables and correlators in non-relativistic ABJM theory”, J. High Energy Phys., 2009:8 (2009), 029, 28 pp., arXiv: 0905.2940 | DOI | MR