@article{SIGMA_2011_7_a12,
author = {Haret C. Rosu and Kira V. Khmelnytskaya},
title = {Shifted {Riccati} {Procedure:} {Application} to {Conformal} {Barotropic} {FRW} {Cosmologies}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a12/}
}
TY - JOUR AU - Haret C. Rosu AU - Kira V. Khmelnytskaya TI - Shifted Riccati Procedure: Application to Conformal Barotropic FRW Cosmologies JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a12/ LA - en ID - SIGMA_2011_7_a12 ER -
%0 Journal Article %A Haret C. Rosu %A Kira V. Khmelnytskaya %T Shifted Riccati Procedure: Application to Conformal Barotropic FRW Cosmologies %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a12/ %G en %F SIGMA_2011_7_a12
Haret C. Rosu; Kira V. Khmelnytskaya. Shifted Riccati Procedure: Application to Conformal Barotropic FRW Cosmologies. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a12/
[1] Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001 | MR
[2] Rosu H. C., Short survey of Darboux transformations, arXiv: quant-ph/9809056
[3] Moniz P. V., Quantum cosmology – the supersymmetric perspective, v. 1, Lecture Notes in Phys., 803, Fundamentals, Springer-Verlag, Berlin, 2010 | Zbl
[4] Mak M. K., Harko T., “Brans–Dicke cosmology with a scalar field potential”, Europhys. Lett., 60 (2002), 155–161, arXiv: ; Saha B., “Nonlinear spinor field in cosmology”, Phys. Rev. D, 69 (2004), 124006, 13 pp., arXiv: ; Nowakowski M., Rosu H. C., “Newton's laws of motion in the form of a Riccati equation”, Phys. Rev. E, 65 (2002), 047602, 4 pp., arXiv: gr-qc/0210087gr-qc/0308088physics/0110066 | DOI | MR | DOI | MR | Zbl | DOI | MR
[5] Khmelnytskaya K. V., Rosu H. C., González A., “Periodic Sturm–Liouville problems related to two Riccati equations of constant coefficients”, Ann. Physics, 325 (2010), 596–606, arXiv: 0910.1377 | DOI | MR | Zbl
[6] Rosu H. C., Cornejo-Pérez O., López-Sandoval R., “Classical harmonic oscillator with Dirac-like parameters and possible applications”, J. Phys. A: Math. Gen., 37 (2004), 11699–11710, arXiv: ; Rosu H. C., López-Sandoval R., “Barotropic FRW cosmologies with a Dirac-like parameter”, Modern Phys. Lett. A, 19 (2004), 1529–1535, arXiv: ; Rosu H. C., Ojeda-May P., “Supersymmetry of FRW barotropic cosmologies”, Internat. J. Theoret. Phys., 45 (2006), 1191–1196, arXiv: math-ph/0402065gr-qc/0403045gr-qc/0510004 | DOI | MR | Zbl | DOI | Zbl | DOI | MR | Zbl
[7] Faraoni V., “Solving for the dynamics of the universe”, Amer. J. Phys., 67 (1999), 732–734, arXiv: ; Lima J. A. S., “Note on solving for the dynamics of the universe”, Amer. J. Phys., 69 (2001), 1245–1247, arXiv: ; Khandai S., “A method to solve Friedmann equations for time dependent equation of state”, Prayas, 3 (2008), 78–88 physics/9901006astro-ph/0109215 | DOI | DOI
[8] Paranjape A., The averaging problem in cosmology, PhD Thesis, Tata Institute, 2009, arXiv: 0906.3165
[9] Stephani H., “Über Lösungen der Einsteinschen Feldgleichungen, die sich in einen fünfdimensionalen flachen Raum einbetten lassen”, Comm. Math. Phys., 4 (1967), 137–142 | DOI | MR | Zbl
[10] Lorenz-Petzold D.,, “Is the Stephani–Krasiński solution a viable model of the Universe?”, J. Astrophys. Astr., 7 (1986), 155–170 | DOI
[11] Rosenthal E., Flanagan É.É., Cosmological backreaction and spatially averaged spatial curvature, arXiv: 0809.2107
[12] Larena J., Alimi J.-M., Buchert T., Kunz M., Corasaniti P.-S., “Testing backreaction effects with observations”, Phys. Rev. D, 79 (2009), 083011, 15 pp., arXiv: 0808.1161 | DOI
[13] Gasperini M., Veneziano G., “The pre-big bang scenario in string cosmology”, Phys. Rep., 373 (2003), 1–212, arXiv: hep-th/0207130 | DOI | MR
[14] Da̧browski M. P., Stachowiak T., Szydłowski M., “Phantom cosmologies”, Phys. Rev. D, 68 (2003), 103519, 10 pp., arXiv: hep-th/0307128 | DOI
[15] Rosu H. C., “Darboux class of cosmological fluids with time-dependent adiabatic indices”, Modern Phys. Lett. A, 15 (2000), 979–990, arXiv: gr-qc/0003108 | DOI
[16] Da̧browski M. P., Denkiewicz T., “Barotropic index $w$-singularities in cosmology”, Phys. Rev. D, 79 (2009), 063521, 5 pp., arXiv: ; Da̧browski M. P., “Dark energy from temporal and spatial singularities of pressure”, Ann. Phys. (8), 19 (2010), 299–303 ; Nojiri S., Odintsov S. D., Tsujikawa S., “Properties of singularities in (phantom) dark energy universe”, Phys. Rev. D, 71 (2005), 063004, 16 pp., arXiv: 0902.3107hep-th/0501025 | DOI | MR | DOI | MR | DOI
[17] Nojiri S., Odintsov S. D., Unified cosmic history in modified gravity: from $f(R)$ theory to Lorentz non-invariant models, arXiv: 1011.0544
[18] Abramowicz M., Stegun I., Handbook of mathematical functions, 9th ed., Dover, New York, 1970