Mots-clés : multivariable Krawtchouk polynomials
@article{SIGMA_2011_7_a118,
author = {F. Alberto Gr\"unbaum and Mizan Rahman},
title = {A system of multivariable {Krawtchouk} polynomials and a probabilistic application},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a118/}
}
TY - JOUR AU - F. Alberto Grünbaum AU - Mizan Rahman TI - A system of multivariable Krawtchouk polynomials and a probabilistic application JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a118/ LA - en ID - SIGMA_2011_7_a118 ER -
%0 Journal Article %A F. Alberto Grünbaum %A Mizan Rahman %T A system of multivariable Krawtchouk polynomials and a probabilistic application %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a118/ %G en %F SIGMA_2011_7_a118
F. Alberto Grünbaum; Mizan Rahman. A system of multivariable Krawtchouk polynomials and a probabilistic application. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a118/
[1] Andrews G., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[2] Aomoto K., Kita M., Hypergeometric functions, Springer, Berlin, 1994 (in Japanese)
[3] Geronimo J.S., Iliev P., “Bispectrality of multivariable Racah–Wilson poynomials”, Constr. Approx., 15 (2010), 417–457 ; arXiv: 0705.1469 | DOI | MR
[4] Gelfand I.M., “General theory of hypergeometric functions”, Soviet Math. Dokl., 33 (1986), 573–577 | MR
[5] Griffiths R.C., “Orthogonal polynomials on the multinomial distribution”, Austral. J. Statist., 13 (1971), 27–35 | DOI | MR | Zbl
[6] Grünbaum F.A., “Block tridiagonal matrices and a beefed-up version of the Ehrenfest urn model”, Modern Analysis and Applications, The Mark Krein Centenary Conference, v. 1, Oper. Theory Adv. Appl., 190, Operator Theory and Related Topics, Birkhäuser Verlag, Basel, 266–277 | DOI | MR
[7] Grünbaum F.A., Pacharoni I., Tirao J.A., Two stochastic models of a random walk in the $U(n)$-spherical duals of $U(n+1)$, arXiv: 1010.0720 | Zbl
[8] Hoare M.R., Rahman M., “Cumultive Bernoulli trials and Krawtchouk processes”, Stochastic Process. Appl., 16 (1983), 113–139 | DOI | MR
[9] Hoare M.R., Rahman M., “A probabilistic origin for a new class of bivariate polynomials”, SIGMA, 4 (2008), 089, 18 pp. ; arXiv: 0812.3879 | DOI | MR | Zbl
[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. I, II, III, McGraw-Hill Book Company, Inc., New York – Toronto – London, 1953, 1955
[11] Iliev P., Terwilliger P., The Rahman polynomials and the Lie algebra $sl_3(C)$, arXiv: 1006.5062
[12] Iliev P., A Lie theoretic interpretation of multivariate hypergeometric polynomials, arXiv: 1101.1683
[13] Mizukawa H., “Zonal spherical functions on the complex reflection groups and $(n+1,m+1)$-hypergeometric functions”, Adv. Math., 184 (2004), 1–17 | DOI | MR | Zbl
[14] Mizukawa H., “Orthogonality relations for multivariate Krawtchouck polynomials”, SIGMA, 7 (2011), 017, 5 pp. ; arXiv: 1009.1203 | DOI | MR | Zbl
[15] Mizukawa H., Tanaka H., “$(n+1,m+1)$-hypergeometric functions associated to character algebras”, Proc. Amer. Math. Soc., 132 (2004), 2613–2618 | DOI | MR | Zbl
[16] Tirao J.A., “The matrix-valued hypergeometric equation”, Proc. Natl. Acad. Sci. USA, 100:14 (2003), 8138–8141 | DOI | MR | Zbl