Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New algebraic relations are presented, involving anticommuting Grassmann variables and Berezin integral, and corresponding naturally to Pachner moves in three and four dimensions. These relations have been found experimentally – using symbolic computer calculations; their essential new feature is that, although they can be treated as deformations of relations corresponding to torsions of acyclic complexes, they can no longer be explained in such terms. In the simpler case of three dimensions, we define an invariant, based on our relations, of a piecewise-linear manifold with triangulated boundary, and present example calculations confirming its nontriviality.
Keywords: Pachner moves, Grassmann algebras, algebraic topology.
@article{SIGMA_2011_7_a116,
     author = {Igor G. Korepanov},
     title = {Relations in {Grassmann} {Algebra} {Corresponding} to {Three-} and {Four-Dimensional} {Pachner} {Moves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a116/}
}
TY  - JOUR
AU  - Igor G. Korepanov
TI  - Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a116/
LA  - en
ID  - SIGMA_2011_7_a116
ER  - 
%0 Journal Article
%A Igor G. Korepanov
%T Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a116/
%G en
%F SIGMA_2011_7_a116
Igor G. Korepanov. Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a116/

[1] Barrett J.W., Naish-Guzman I., “The Ponzano–Regge model”, Classical Quantum Gravity, 26 (2009), 155014, 48 pp. ; arXiv: 0803.3319 | DOI | Zbl

[2] Berezin F.A., Introduction to superanalysis, Mathematical Physics and Applied Mathematics, 9, D. Reidel Publishing Company, Dordrecht, 1987 | MR | Zbl

[3] Bel'kov S.I., Korepanov I.G., “A matrix solution of the pentagon equation with anticommuting variables”, Theoret. and Math. Phys., 163 (2010), 819–830 ; arXiv: 0910.2082 | DOI | MR

[4] Bel'kov S.I., Korepanov I.G., Martyushev E.V., A simple topological quantum field theory for manifolds with triangulated boundary, arXiv: 0907.3787

[5] Dubois J., Korepanov I.G., Martyushev E.V., “A Euclidean geometric invariant of framed (un)knots in manifolds”, SIGMA, 6 (2010), 032, 29 pp. ; arXiv: math.GT/0605164 | DOI | MR | Zbl

[6] Fomenko A.T., Matveev S.V., Algorithmic and computer methods for three-manifolds, Mathematics and its Applications, 425, Kluwer Academic Publishers, Dordrecht, 1997 | MR | Zbl

[7] GAP – Groups, Algorithms, Programming – a system for computational discrete algebra http://www.gap-system.org/

[8] Korepanov A.I., Korepanov I.G., Sadykov N.M., PL: Piecewise-linear topology using GAP http://sf.net/projects/plgap/

[9] Korepanov I.G., Algebraic relations with anticommuting variables for four-dimensional Pachner moves $3\to 3$ and $2 \leftrightarrow 4$, arXiv: 0911.1395

[10] Korepanov I.G., Two deformations of a fermionic solution to pentagon equation, arXiv: 1104.3487

[11] Korepanov I.G., Sadykov N.M., Four-dimensional Grassmann-algebraic TQFT's, work in progress

[12] Lickorish W.B.R., “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320 ; arXiv: math.GT/9911256 | DOI | MR | Zbl

[13] Martyushev E.V., “Euclidean simplices and invariants of three-manifolds: a modification of the invariant for lens spaces”, Izv. Chelyabinsk. Nauchn. Tsentra, 2003:2(19) (2003), 1–5 ; arXiv: math.AT/0212018 | MR

[14] Martyushev E.V., “Euclidean geometric invariants of links in 3-sphere”, Izv. Chelyabinsk. Nauchn. Tsentra, 2004:4(26) (2004), 1–5 ; arXiv: math.GT/0409241 | MR

[15] Maxima, a computer algebra system http://maxima.sourceforge.net/

[16] Pachner U., “P.L. homeomorphic manifolds are equivalent by elementary shellings”, European J. Combin., 12 (1991), 129–145 | MR | Zbl

[17] Turaev V.G., Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Basel, Birkhäuser Verlag, 2001 | MR | Zbl