@article{SIGMA_2011_7_a116,
author = {Igor G. Korepanov},
title = {Relations in {Grassmann} {Algebra} {Corresponding} to {Three-} and {Four-Dimensional} {Pachner} {Moves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a116/}
}
TY - JOUR AU - Igor G. Korepanov TI - Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a116/ LA - en ID - SIGMA_2011_7_a116 ER -
Igor G. Korepanov. Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a116/
[1] Barrett J.W., Naish-Guzman I., “The Ponzano–Regge model”, Classical Quantum Gravity, 26 (2009), 155014, 48 pp. ; arXiv: 0803.3319 | DOI | Zbl
[2] Berezin F.A., Introduction to superanalysis, Mathematical Physics and Applied Mathematics, 9, D. Reidel Publishing Company, Dordrecht, 1987 | MR | Zbl
[3] Bel'kov S.I., Korepanov I.G., “A matrix solution of the pentagon equation with anticommuting variables”, Theoret. and Math. Phys., 163 (2010), 819–830 ; arXiv: 0910.2082 | DOI | MR
[4] Bel'kov S.I., Korepanov I.G., Martyushev E.V., A simple topological quantum field theory for manifolds with triangulated boundary, arXiv: 0907.3787
[5] Dubois J., Korepanov I.G., Martyushev E.V., “A Euclidean geometric invariant of framed (un)knots in manifolds”, SIGMA, 6 (2010), 032, 29 pp. ; arXiv: math.GT/0605164 | DOI | MR | Zbl
[6] Fomenko A.T., Matveev S.V., Algorithmic and computer methods for three-manifolds, Mathematics and its Applications, 425, Kluwer Academic Publishers, Dordrecht, 1997 | MR | Zbl
[7] GAP – Groups, Algorithms, Programming – a system for computational discrete algebra http://www.gap-system.org/
[8] Korepanov A.I., Korepanov I.G., Sadykov N.M., PL: Piecewise-linear topology using GAP http://sf.net/projects/plgap/
[9] Korepanov I.G., Algebraic relations with anticommuting variables for four-dimensional Pachner moves $3\to 3$ and $2 \leftrightarrow 4$, arXiv: 0911.1395
[10] Korepanov I.G., Two deformations of a fermionic solution to pentagon equation, arXiv: 1104.3487
[11] Korepanov I.G., Sadykov N.M., Four-dimensional Grassmann-algebraic TQFT's, work in progress
[12] Lickorish W.B.R., “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320 ; arXiv: math.GT/9911256 | DOI | MR | Zbl
[13] Martyushev E.V., “Euclidean simplices and invariants of three-manifolds: a modification of the invariant for lens spaces”, Izv. Chelyabinsk. Nauchn. Tsentra, 2003:2(19) (2003), 1–5 ; arXiv: math.AT/0212018 | MR
[14] Martyushev E.V., “Euclidean geometric invariants of links in 3-sphere”, Izv. Chelyabinsk. Nauchn. Tsentra, 2004:4(26) (2004), 1–5 ; arXiv: math.GT/0409241 | MR
[15] Maxima, a computer algebra system http://maxima.sourceforge.net/
[16] Pachner U., “P.L. homeomorphic manifolds are equivalent by elementary shellings”, European J. Combin., 12 (1991), 129–145 | MR | Zbl
[17] Turaev V.G., Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Basel, Birkhäuser Verlag, 2001 | MR | Zbl