Noncommutative Phase Spaces by Coadjoint Orbits Method
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing). We then realize some of them as coadjoint orbits of the anisotropic Newton–Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field.
Keywords: classical mechanics, noncommutative phase space, symplectic realizations, magnetic and dual magnetic fields.
Mots-clés : coadjoint orbit
@article{SIGMA_2011_7_a115,
     author = {Ancille Ngendakumana and Joachim Nzotungicimpaye and Leonard Todjihounde},
     title = {Noncommutative {Phase} {Spaces} by {Coadjoint} {Orbits} {Method}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a115/}
}
TY  - JOUR
AU  - Ancille Ngendakumana
AU  - Joachim Nzotungicimpaye
AU  - Leonard Todjihounde
TI  - Noncommutative Phase Spaces by Coadjoint Orbits Method
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a115/
LA  - en
ID  - SIGMA_2011_7_a115
ER  - 
%0 Journal Article
%A Ancille Ngendakumana
%A Joachim Nzotungicimpaye
%A Leonard Todjihounde
%T Noncommutative Phase Spaces by Coadjoint Orbits Method
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a115/
%G en
%F SIGMA_2011_7_a115
Ancille Ngendakumana; Joachim Nzotungicimpaye; Leonard Todjihounde. Noncommutative Phase Spaces by Coadjoint Orbits Method. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a115/

[1] Abraham R., Marsden J.E., Foundations of mechanics, 2nd ed., Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978 | MR | Zbl

[2] Derome J.R., Dubois J.G., “Hooke's symmetries and nonrelativistic cosmological kinematics. I”, Nuovo Cimento B, 9 (1972), 351–376 | DOI | MR

[3] Duval C., Horváthy P.A., “The exotic Galilei group and the “Peierls substitution””, Phys. Lett. B, 479 (2000), 284–290 ; arXiv: hep-th/0002233 | DOI | MR | Zbl

[4] Duval C., Horváthy P.A., “Exotic Galilean symmetry in the non-commutative plane and the Hall effect”, J. Phys. A: Math. Gen., 34 (2001), 10097–10107 ; arXiv: hep-th/0106089 | DOI | MR | Zbl

[5] Duval C., Horváth Z., Horváthy P.A., “Exotic plasma as classical Hall liquid”, Internat. J. Modern Phys. B, 15 (2001), 3397–3408 ; arXiv: cond-mat/0101449 | DOI

[6] Grigore D.R., “Transitive symplectic manifolds in $1+2$ dimensions”, J. Math. Phys., 37 (1996), 240–253 | DOI | MR | Zbl

[7] Guillemin V., Sternberg S., Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984 | MR

[8] Hamermesh M., Group theory and its applications to physical problems, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Inc., Reading, Mass. – London, 1962 | MR | Zbl

[9] Horváthy P.A., “The non-commutative Landau problem”, Ann. Physics, 299 (2002), 128–140 ; arXiv: hep-th/0201007 | DOI | MR | Zbl

[10] Kirillov A.A., Elements of theory of representations, Grundlehren der Mathematischen Wissenschaften, 220, Springer-Verlag, Berlin – New York, 1976 | MR | Zbl

[11] Kostant B., “Quantization and unitary representations. I. Prequantization”, Lectures in Modern Analysis and Applications, v. III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 87–208 | MR

[12] Nzotungicimpaye J., “Galilei–Newton law by group theoretical methods”, Lett. Math. Phys., 15 (1988), 101–110 | DOI | MR | Zbl

[13] Nzotungicimpaye J., “Jerk by group theoretical methods”, J. Phys. A: Math. Gen., 27 (1994), 4519–4526 | DOI | MR | Zbl

[14] Peierls R., “On the theory of diamagnetism of conduction electrons”, Z. Phys., 80 (1933), 763–791 | DOI

[15] Romero J.M., Santiago J.A., Vergara J.D., “Newton's second law in a non-commutative space”, Phys. Lett. A, 310 (2003), 9–12 ; arXiv: hep-th/0211165 | DOI | MR | Zbl

[16] Snyder H.S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl

[17] Souriau J.-M., Structure des systèmes dynamiques, Maîtrises de Mathématiques Dunod, Paris, 1970 | MR

[18] Vanhecke F.J., Sigaud C., da Silva A.R., “Noncommutative configuration space. Classical and quantum mechanical aspects”, Braz. J. Phys., 36 (2006), 194–207 ; arXiv: math-ph/0502003 | DOI

[19] Vanhecke F.J., Sigaud C., da Silva A.R., “Modified symplectic structures in cotangent bundles of Lie groups aspects”, Braz. J. Phys., 39 (2009), 18–24 ; arXiv: 0804.1251 | DOI

[20] Wei G.-F., Long C.-Y., Long Z.-W., Qin S.-J., Fu Q., “Classical mechanics in non-commutative phase space”, Chinese Phys. C, 32 (2008), 338–341 | DOI