Mots-clés : coadjoint orbit
@article{SIGMA_2011_7_a115,
author = {Ancille Ngendakumana and Joachim Nzotungicimpaye and Leonard Todjihounde},
title = {Noncommutative {Phase} {Spaces} by {Coadjoint} {Orbits} {Method}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a115/}
}
TY - JOUR AU - Ancille Ngendakumana AU - Joachim Nzotungicimpaye AU - Leonard Todjihounde TI - Noncommutative Phase Spaces by Coadjoint Orbits Method JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a115/ LA - en ID - SIGMA_2011_7_a115 ER -
%0 Journal Article %A Ancille Ngendakumana %A Joachim Nzotungicimpaye %A Leonard Todjihounde %T Noncommutative Phase Spaces by Coadjoint Orbits Method %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a115/ %G en %F SIGMA_2011_7_a115
Ancille Ngendakumana; Joachim Nzotungicimpaye; Leonard Todjihounde. Noncommutative Phase Spaces by Coadjoint Orbits Method. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a115/
[1] Abraham R., Marsden J.E., Foundations of mechanics, 2nd ed., Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978 | MR | Zbl
[2] Derome J.R., Dubois J.G., “Hooke's symmetries and nonrelativistic cosmological kinematics. I”, Nuovo Cimento B, 9 (1972), 351–376 | DOI | MR
[3] Duval C., Horváthy P.A., “The exotic Galilei group and the “Peierls substitution””, Phys. Lett. B, 479 (2000), 284–290 ; arXiv: hep-th/0002233 | DOI | MR | Zbl
[4] Duval C., Horváthy P.A., “Exotic Galilean symmetry in the non-commutative plane and the Hall effect”, J. Phys. A: Math. Gen., 34 (2001), 10097–10107 ; arXiv: hep-th/0106089 | DOI | MR | Zbl
[5] Duval C., Horváth Z., Horváthy P.A., “Exotic plasma as classical Hall liquid”, Internat. J. Modern Phys. B, 15 (2001), 3397–3408 ; arXiv: cond-mat/0101449 | DOI
[6] Grigore D.R., “Transitive symplectic manifolds in $1+2$ dimensions”, J. Math. Phys., 37 (1996), 240–253 | DOI | MR | Zbl
[7] Guillemin V., Sternberg S., Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984 | MR
[8] Hamermesh M., Group theory and its applications to physical problems, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Inc., Reading, Mass. – London, 1962 | MR | Zbl
[9] Horváthy P.A., “The non-commutative Landau problem”, Ann. Physics, 299 (2002), 128–140 ; arXiv: hep-th/0201007 | DOI | MR | Zbl
[10] Kirillov A.A., Elements of theory of representations, Grundlehren der Mathematischen Wissenschaften, 220, Springer-Verlag, Berlin – New York, 1976 | MR | Zbl
[11] Kostant B., “Quantization and unitary representations. I. Prequantization”, Lectures in Modern Analysis and Applications, v. III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 87–208 | MR
[12] Nzotungicimpaye J., “Galilei–Newton law by group theoretical methods”, Lett. Math. Phys., 15 (1988), 101–110 | DOI | MR | Zbl
[13] Nzotungicimpaye J., “Jerk by group theoretical methods”, J. Phys. A: Math. Gen., 27 (1994), 4519–4526 | DOI | MR | Zbl
[14] Peierls R., “On the theory of diamagnetism of conduction electrons”, Z. Phys., 80 (1933), 763–791 | DOI
[15] Romero J.M., Santiago J.A., Vergara J.D., “Newton's second law in a non-commutative space”, Phys. Lett. A, 310 (2003), 9–12 ; arXiv: hep-th/0211165 | DOI | MR | Zbl
[16] Snyder H.S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl
[17] Souriau J.-M., Structure des systèmes dynamiques, Maîtrises de Mathématiques Dunod, Paris, 1970 | MR
[18] Vanhecke F.J., Sigaud C., da Silva A.R., “Noncommutative configuration space. Classical and quantum mechanical aspects”, Braz. J. Phys., 36 (2006), 194–207 ; arXiv: math-ph/0502003 | DOI
[19] Vanhecke F.J., Sigaud C., da Silva A.R., “Modified symplectic structures in cotangent bundles of Lie groups aspects”, Braz. J. Phys., 39 (2009), 18–24 ; arXiv: 0804.1251 | DOI
[20] Wei G.-F., Long C.-Y., Long Z.-W., Qin S.-J., Fu Q., “Classical mechanics in non-commutative phase space”, Chinese Phys. C, 32 (2008), 338–341 | DOI