A Connection Formula of the Hahn–Exton $q$-Bessel Function
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show a connection formula of the Hahn–Exton $q$-Bessel function around the origin and the infinity. We introduce the $q$-Borel transformation and the $q$-Laplace transformation following C. Zhang to obtain the connection formula. We consider the limit $p\to 1^-$ of the connection formula.
Keywords: Hahn–Exton $q$-Bessel function, connection problems.
Mots-clés : $q$-Borel transformation
@article{SIGMA_2011_7_a114,
     author = {Takeshi Morita},
     title = {A {Connection} {Formula} of the {Hahn{\textendash}Exton} $q${-Bessel} {Function}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a114/}
}
TY  - JOUR
AU  - Takeshi Morita
TI  - A Connection Formula of the Hahn–Exton $q$-Bessel Function
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a114/
LA  - en
ID  - SIGMA_2011_7_a114
ER  - 
%0 Journal Article
%A Takeshi Morita
%T A Connection Formula of the Hahn–Exton $q$-Bessel Function
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a114/
%G en
%F SIGMA_2011_7_a114
Takeshi Morita. A Connection Formula of the Hahn–Exton $q$-Bessel Function. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a114/

[1] Birkhoff G.D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad., 49 (1913), 521–568 | DOI | Zbl

[2] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[3] Hahn W., “Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der Hypergeometrischen $q$-Differenzengleichung. Das $q$-Analogon der Laplace-Transformation”, Math. Nachr., 2 (1949), 340–379 | DOI | MR | Zbl

[4] Olver F.W.J., Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York – London, 1974 | MR

[5] Swarttouw R.F., Meijer H.G., “A $q$-analogue of the Wronskian and a second solution of the Hahn–Exton $q$-Bessel difference equation”, Proc. Amer. Math. Soc., 129 (1994), 855–864 | DOI | MR

[6] Watson G.N., “The continuation of functions defined by generalized hypergeometric series”, Trans. Camb. Phil. Soc., 21 (1910), 281–299 | Zbl

[7] Zhang C., “Remarks on some basic hypergeometric series”, Theory and Applications of Special Functions, Dev. Math., 13, Springer, New York, 2005, 479–491 | DOI | MR | Zbl

[8] Zhang C., “Sur les fonctions $q$-Bessel de Jackson”, J. Approx. Theory, 122 (2003), 208–223 | DOI | MR | Zbl

[9] Zhang C., “Une sommation discrè pour des équations aux $q$-différences linéaires et à coefficients, analytiques: théorie générale et exemples”, Differential Equations and Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309–329 | DOI | MR | Zbl