@article{SIGMA_2011_7_a113,
author = {Ioan Bucataru and Zolt\'an Muzsnay},
title = {Projective {Metrizability} and {Formal} {Integrability}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a113/}
}
Ioan Bucataru; Zoltán Muzsnay. Projective Metrizability and Formal Integrability. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a113/
[1] Álvarez Paiva J.C., “Symplectic geometry and Hilbert's fourth problem”, J. Differential Geom., 69 (2005), 353–378 | MR | Zbl
[2] Anderson I., Thompson G., “The inverse problem of the calculus of variations for ordinary differential equations”, Mem. Amer. Math. Soc., 98, no. 473, 1992 | MR | Zbl
[3] Antonelli P.L., Ingarden R.S., Matsumoto M., The theory of sprays and Finsler spaces with applications in physics and biology, Kluwer Academic Publisher, Dordrecht, 1993 | MR | Zbl
[4] Bucataru I., Constantinescu O.A., Dahl M.F., “A geometric setting for systems of ordinary differential equations”, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1291–1327 ; arXiv: 1011.5799 | DOI
[5] Bucataru I., Dahl M.F., “Semi basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations”, J. Geom. Mech., 1 (2009), 159–180 ; arXiv: 0903.1169 | DOI | MR | Zbl
[6] Bucataru I., Muzsnay Z., Projective and Finsler metrizability: parameterization-rigidity of the geodesics, arXiv: 1108.4628
[7] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffits P.A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | MR | Zbl
[8] Crampin M., “On the differential geometry of the Euler–Lagrange equation and the inverse problem of Lagrangian dynamics”, J. Phys. A: Math. Gen., 14 (1981), 2567–2575 | DOI | MR | Zbl
[9] Crampin M., “On the inverse problem for sprays”, Publ. Math. Debrecen, 70 (2007), 319–335 | MR | Zbl
[10] Crampin M., “Isotropic and $R$-flat sprays”, Houston J. Math., 33 (2007), 451–459 | MR | Zbl
[11] Crampin M., “Some remarks on the Finslerian version of Hilbert's fourth problem”, Houston J. Math., 37 (2011), 369–391 | MR | Zbl
[12] Darboux G., Leçons sur la theorie des surfaces, v. III, Gauthier-Villars, Paris, 1894 | Zbl
[13] Frölicher A., Nijenhuis A., “Theory ot vector-valued differential forms. I. Derivations in the graded ring of differential forms”, Nederl. Akad. Wet. Proc. Ser. A, 59 (1956), 338–359 | MR
[14] Grifone J., “Structure presque-tangente et connexions. I”, Ann. Inst. Fourier (Grenoble), 22 (1972), 287–334 | DOI | MR | Zbl
[15] Grifone J., Muzsnay Z., Variational principles for second-order differential equations. Application of the Spencer theory to characterize variational sprays, World Scientific Publishing Co., Inc., River Edge, NJ, 2000 | DOI | MR | Zbl
[16] Hamel G., “Über die Geometrien, in denen die Geraden die Kürzesten sind”, Math. Ann., 57 (1903), 231–264 | DOI | MR | Zbl
[17] Klein J., Voutier A., “Formes extérieures génératrices de sprays”, Ann. Inst. Fourier (Grenoble), 18 (1968), 241–260 | DOI | MR | Zbl
[18] Kolár I., Michor P.W., Slovak J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR
[19] Krupková O., Prince G.E., “Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations”, Handbook of Global Analysis, eds. D. Krupka and D.J. Saunders, Elsevier Sci. B.V., Amsterdam, 2007, 837–904 | DOI | MR
[20] de León M., Rodrigues P.R., Methods of differential geometry in analytical mechanics, North-Holland Mathematics Studies, 158, North-Holland Publishing Co., Amsterdam, 1989 | MR | Zbl
[21] Lovas R.L., “A note on Finsler–Minkowski norms”, Houston J. Math., 33 (2007), 701–707 | MR | Zbl
[22] Matsumoto M., “Every path space of dimension two is projectively related to a Finsler space”, Open Syst. Inf. Dyn., 3 (1995), 291–303 | DOI | Zbl
[23] Matsumoto M., Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Shigaken, 1986 | MR | Zbl
[24] Miron R., Anastasiei M., The geometry of Lagrange spaces: theory and applications, Fundamental Theories of Physics, 59, Kluwer Academic Publishers Group, Dordrecht, 1994 | MR | Zbl
[25] Morandi G., Ferrario C., Lo Vecchio G., Marmo G., Rubano C., “The inverse problem in the calculus of variations and the geometry of the tangent bundle”, Phys. Rep., 188 (1990), 147–284 | DOI | MR | Zbl
[26] Muzsnay Z., “The Euler–Lagrange PDE and Finsler metrizability”, Houston J. Math., 32 (2006), 79–98 ; arXiv: math.DG/0602383 | MR | Zbl
[27] Rapcsák A., “Die Bestimmung der Grundfunktionen projektiv-ebener metrischer Räume”, Publ. Math. Debrecen, 9 (1962), 164–167 | MR | Zbl
[28] Sarlet W., “The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics”, J. Phys. A: Math. Gen., 15 (1982), 1503–1517 | DOI | MR | Zbl
[29] Shen Z., Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001 | MR
[30] Szilasi J., “Calculus along the tangent bundle projection and projective metrizability”, Differential Geometry and its Applications, World Sci. Publ., Hackensack, NJ, 2008, 539–558 | DOI | MR | Zbl
[31] Szilasi J., Vattamány S., “On the Finsler-metrizabilities of spray manifolds”, Period. Math. Hungar., 44 (2002), 81–100 | DOI | MR | Zbl
[32] Yang G., “Some classes of sprays in projective spray geometry”, Differential Geom. Appl., 29 (2011), 606–614 | DOI | MR | Zbl