Breaking pseudo-rotational symmetry through $\mathbf H^2_+$ metric deformation in the Eckart potential problem
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The peculiarity of the Eckart potential problem on $\mathbf H^2_+$ (the upper sheet of the two-sheeted two-dimensional hyperboloid), to preserve the $(2l+1)$-fold degeneracy of the states typical for the geodesic motion there, is usually explained in casting the respective Hamiltonian in terms of the Casimir invariant of an so$(2,1)$ algebra, referred to as potential algebra. In general, there are many possible similarity transformations of the symmetry algebras of the free motions on curved surfaces towards potential algebras, which are not all necessarily unitary. In the literature, a transformation of the symmetry algebra of the geodesic motion on $\mathbf H_+^2$ towards the potential algebra of Eckart's Hamiltonian has been constructed for the prime purpose to prove that the Eckart interaction belongs to the class of Natanzon potentials. We here take a different path and search for a transformation which connects the $(2l+1)$ dimensional representation space of the pseudo-rotational so$(2,1)$ algebra, spanned by the rank-$l$ pseudo-spherical harmonics, to the representation space of equal dimension of the potential algebra and find a transformation of the scaling type. Our case is that in so doing one is producing a deformed isometry copy to $\mathbf H^2_+$ such that the free motion on the copy is equivalent to a motion on $\mathbf H^2_+$, perturbed by a $\coth$ interaction. In this way, we link the so$(2,1)$ potential algebra concept of the Eckart Hamiltonian to a subtle type of pseudo-rotational symmetry breaking through $\mathbf H^2_+$ metric deformation. From a technical point of view, the results reported here are obtained by virtue of certain nonlinear finite expansions of Jacobi polynomials into pseudo-spherical harmonics. In due places, the pseudo-rotational case is paralleled by its so(3) compact analogue, the cotangent perturbed motion on S$^2$. We expect awareness of different so$(2,1)$/so$(3)$ isometry copies to benefit simulation studies on curved manifolds of many-body systems.
Keywords: pseudo-rotational symmetry, Eckart potential, symmetry breaking through metric deformation.
@article{SIGMA_2011_7_a112,
     author = {Nehemias Leija-Martinez and David Edwin Alvarez-Castillo and Mariana Kirchbach},
     title = {Breaking pseudo-rotational symmetry through $\mathbf H^2_+$ metric deformation in the {Eckart} potential problem},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a112/}
}
TY  - JOUR
AU  - Nehemias Leija-Martinez
AU  - David Edwin Alvarez-Castillo
AU  - Mariana Kirchbach
TI  - Breaking pseudo-rotational symmetry through $\mathbf H^2_+$ metric deformation in the Eckart potential problem
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a112/
LA  - en
ID  - SIGMA_2011_7_a112
ER  - 
%0 Journal Article
%A Nehemias Leija-Martinez
%A David Edwin Alvarez-Castillo
%A Mariana Kirchbach
%T Breaking pseudo-rotational symmetry through $\mathbf H^2_+$ metric deformation in the Eckart potential problem
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a112/
%G en
%F SIGMA_2011_7_a112
Nehemias Leija-Martinez; David Edwin Alvarez-Castillo; Mariana Kirchbach. Breaking pseudo-rotational symmetry through $\mathbf H^2_+$ metric deformation in the Eckart potential problem. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a112/

[1] Natanzon G.A., “General properties of potentials for which the Schrödinger equation can be solved by means of hyper geometric functions”, Theoret. and Math. Phys., 38 (1979), 146–153 | DOI | MR | Zbl

[2] Alhassid Y., Gürsey F., Iachello F., “Potential scattering, transfer matrix, and group theory”, Phys. Rev. Lett., 50 (1983), 873–876 | DOI | MR

[3] Engelfield M.J., Quesne C., “Dynamical potential algebras for Gendenshtein and Morse potentials”, J. Phys. A: Math. Gen., 24 (1991), 3557–3574 | DOI | MR

[4] Manning M.F., Rosen N., “Potential functions for vibration of diatomic molecules”, Phys. Rev., 44 (1933), 951–954 | DOI

[5] Wu J., Alhassid Y., “The potential group approach and hypergeometric differential equations”, J. Math. Phys., 31 (1990), 557–562 ; Wu J., Alhassid Y., Gürsey F., “Group theory approach to scattering. IV. Solvable potentials associated with SO(2,2)”, Ann. Physics, 196 (1989), 163–181 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Levai G., “Solvable potentials associated with su(1,1) algebras: a systematic study”, J. Phys. A: Math. Gen., 27 (1994), 3809–3828 | DOI | MR | Zbl

[7] Cordero P., Salamó S., “Algebraic solution for the Natanzon hypergeometric potentials”, J. Math. Phys., 35 (1994), 3301–3307 | DOI | MR | Zbl

[8] Cordriansky S., Cordero P., Salamó S., “On the generalized Morse potential,”, J. Phys. A: Math. Gen., 32 (1999), 6287–6293 | DOI | MR

[9] Gangopadhyaya A., Mallow J.V., Sukhatme U.P., “Translational shape invariance and inherent potential algebra”, Phys. Rev. A, 58 (1998), 4287–4292 | DOI

[10] Rasinariu C., Mallow J.V., Gangopadhyaya A., “Exactly solvable problems of quantum mechanics and their spectrum generating algebras: a review”, Cent. Eur. J. Phys., 5 (2007), 111–134 | DOI

[11] Kalnins E.G., Miller W. Jr., Pogosyan G., “Superintegrability on the two-dimensional hyperboloid”, J. Math. Phys., 38 (1997), 5416–5433 ; Berntson B.K., Classical and quantum analogues of the Kepler problem in non-Euclidean geometries of constant curvature, B.Sc. Thesis, University of Minnesota, 2011 | DOI | MR | Zbl

[12] Gazeau J.-P., Coherent states in quantum physics, Wiley-VCH, Weinheim, 2009

[13] Bogdanova I., Vandergheynst P., Gazeau J.-P., “Continuous wavelet transformation on the hyperboloid”, Appl. Comput. Harmon. Anal., 23 (2007), 286–306 | DOI | MR

[14] Kim Y.S., Noz M.E., Theory and application of the Poincaré group, D. Reidel Publishing Co., Dordrecht, 1986 | MR

[15] De R., Dutt R., Sukhatme U., “Mapping of shape invariant potentials under point canonical transformations”, J. Phys. A: Math. Gen., 25 (1992), L843–L850 | DOI | MR

[16] Alvarez-Castillo D. E., Compean C.B., Kirchbach M., “Rotational symmetry and degeneracy: a cotangent perturbed rigid rotator of unperturbed level multiplicity”, Mol. Phys., 109 (2011), 1477–1483 ; arXiv: 1105.1354 | DOI

[17] Raposo A., Weber H.-J., Alvarez-Castillo D.E., Kirchbach M., “Romanovski polynomials in selected physics problems”, Cent. Eur. J. Phys., 5 (2007), 253–284 ; arXiv: 0706.3897 | DOI

[18] Higgs P.W., “Dynamical symmetries in a spherical geometry. I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl