@article{SIGMA_2011_7_a112,
author = {Nehemias Leija-Martinez and David Edwin Alvarez-Castillo and Mariana Kirchbach},
title = {Breaking pseudo-rotational symmetry through $\mathbf H^2_+$ metric deformation in the {Eckart} potential problem},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a112/}
}
TY - JOUR AU - Nehemias Leija-Martinez AU - David Edwin Alvarez-Castillo AU - Mariana Kirchbach TI - Breaking pseudo-rotational symmetry through $\mathbf H^2_+$ metric deformation in the Eckart potential problem JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a112/ LA - en ID - SIGMA_2011_7_a112 ER -
%0 Journal Article %A Nehemias Leija-Martinez %A David Edwin Alvarez-Castillo %A Mariana Kirchbach %T Breaking pseudo-rotational symmetry through $\mathbf H^2_+$ metric deformation in the Eckart potential problem %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a112/ %G en %F SIGMA_2011_7_a112
Nehemias Leija-Martinez; David Edwin Alvarez-Castillo; Mariana Kirchbach. Breaking pseudo-rotational symmetry through $\mathbf H^2_+$ metric deformation in the Eckart potential problem. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a112/
[1] Natanzon G.A., “General properties of potentials for which the Schrödinger equation can be solved by means of hyper geometric functions”, Theoret. and Math. Phys., 38 (1979), 146–153 | DOI | MR | Zbl
[2] Alhassid Y., Gürsey F., Iachello F., “Potential scattering, transfer matrix, and group theory”, Phys. Rev. Lett., 50 (1983), 873–876 | DOI | MR
[3] Engelfield M.J., Quesne C., “Dynamical potential algebras for Gendenshtein and Morse potentials”, J. Phys. A: Math. Gen., 24 (1991), 3557–3574 | DOI | MR
[4] Manning M.F., Rosen N., “Potential functions for vibration of diatomic molecules”, Phys. Rev., 44 (1933), 951–954 | DOI
[5] Wu J., Alhassid Y., “The potential group approach and hypergeometric differential equations”, J. Math. Phys., 31 (1990), 557–562 ; Wu J., Alhassid Y., Gürsey F., “Group theory approach to scattering. IV. Solvable potentials associated with SO(2,2)”, Ann. Physics, 196 (1989), 163–181 | DOI | MR | Zbl | DOI | MR | Zbl
[6] Levai G., “Solvable potentials associated with su(1,1) algebras: a systematic study”, J. Phys. A: Math. Gen., 27 (1994), 3809–3828 | DOI | MR | Zbl
[7] Cordero P., Salamó S., “Algebraic solution for the Natanzon hypergeometric potentials”, J. Math. Phys., 35 (1994), 3301–3307 | DOI | MR | Zbl
[8] Cordriansky S., Cordero P., Salamó S., “On the generalized Morse potential,”, J. Phys. A: Math. Gen., 32 (1999), 6287–6293 | DOI | MR
[9] Gangopadhyaya A., Mallow J.V., Sukhatme U.P., “Translational shape invariance and inherent potential algebra”, Phys. Rev. A, 58 (1998), 4287–4292 | DOI
[10] Rasinariu C., Mallow J.V., Gangopadhyaya A., “Exactly solvable problems of quantum mechanics and their spectrum generating algebras: a review”, Cent. Eur. J. Phys., 5 (2007), 111–134 | DOI
[11] Kalnins E.G., Miller W. Jr., Pogosyan G., “Superintegrability on the two-dimensional hyperboloid”, J. Math. Phys., 38 (1997), 5416–5433 ; Berntson B.K., Classical and quantum analogues of the Kepler problem in non-Euclidean geometries of constant curvature, B.Sc. Thesis, University of Minnesota, 2011 | DOI | MR | Zbl
[12] Gazeau J.-P., Coherent states in quantum physics, Wiley-VCH, Weinheim, 2009
[13] Bogdanova I., Vandergheynst P., Gazeau J.-P., “Continuous wavelet transformation on the hyperboloid”, Appl. Comput. Harmon. Anal., 23 (2007), 286–306 | DOI | MR
[14] Kim Y.S., Noz M.E., Theory and application of the Poincaré group, D. Reidel Publishing Co., Dordrecht, 1986 | MR
[15] De R., Dutt R., Sukhatme U., “Mapping of shape invariant potentials under point canonical transformations”, J. Phys. A: Math. Gen., 25 (1992), L843–L850 | DOI | MR
[16] Alvarez-Castillo D. E., Compean C.B., Kirchbach M., “Rotational symmetry and degeneracy: a cotangent perturbed rigid rotator of unperturbed level multiplicity”, Mol. Phys., 109 (2011), 1477–1483 ; arXiv: 1105.1354 | DOI
[17] Raposo A., Weber H.-J., Alvarez-Castillo D.E., Kirchbach M., “Romanovski polynomials in selected physics problems”, Cent. Eur. J. Phys., 5 (2007), 253–284 ; arXiv: 0706.3897 | DOI
[18] Higgs P.W., “Dynamical symmetries in a spherical geometry. I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl