@article{SIGMA_2011_7_a11,
author = {Ghali Filali and Nikolai Kitanine},
title = {Spin {Chains} with {Non-Diagonal} {Boundaries} and {Trigonometric} {SOS} {Model} with {Reflecting} {End}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a11/}
}
TY - JOUR AU - Ghali Filali AU - Nikolai Kitanine TI - Spin Chains with Non-Diagonal Boundaries and Trigonometric SOS Model with Reflecting End JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a11/ LA - en ID - SIGMA_2011_7_a11 ER -
%0 Journal Article %A Ghali Filali %A Nikolai Kitanine %T Spin Chains with Non-Diagonal Boundaries and Trigonometric SOS Model with Reflecting End %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a11/ %G en %F SIGMA_2011_7_a11
Ghali Filali; Nikolai Kitanine. Spin Chains with Non-Diagonal Boundaries and Trigonometric SOS Model with Reflecting End. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a11/
[1] Albert T.-D., Boos H., Flume R., Poghossian R. H., Ruhlig K., “An $F$-twisted XYZ model”, Lett. Math. Phys., 53 (2000), 201–214, arXiv: nlin.SI/0005023 | DOI | MR | Zbl
[2] Baxter R., “Eight-vertex model in lattice statistic and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized Ice-type lattice model”, Ann. Physics, 76 (1973), 25–47 | DOI | MR | Zbl
[3] Cao J., Lin H.-Q., Shi K.-J., Wang Y., “Exact solution of XXZ spin chain with unparallel boundary fields”, Nuclear Phys. B, 663 (2003), 487–519, arXiv: cond-mat/0212163 | DOI | MR | Zbl
[4] Cherednik I. V., “Factorizing particles on a half-line and root systems”, Theoret. and Math. Phys., 61 (1984), 977–983 | DOI | MR | Zbl
[5] de Gier J., Essler F. H. L., “Bethe ansatz solution of the asymmetric exclusion process with open boundaries”, Phys. Rev. Lett., 95 (2005), 240601, 4 pp., arXiv: cond-mat/0508707 | DOI | MR
[6] de Gier J., Essler F. H. L., “Exact spectral gaps of the asymmetric exclusion process with open boundaries”, J. Stat. Mech. Theory Exp., 2006:12 (2006), P12011, 45 pp., arXiv: cond-mat/0609645 | DOI
[7] Faddeev L. D., Sklyanin E. K., Takhtajan L. A., “Quantum inverse problem method. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI | MR
[8] Felder G., “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), 1, 2, Birkhäuser, Basel, 1995, 1247–1255, arXiv: hep-th/9407154 | MR
[9] Felder G., Varchenko A., “Algebraic Bethe ansatz for the elliptic quantum group $E_{\tau,\eta}({\rm sl}_2)$”, Nuclear Phys. B, 480 (1996), 485–503, arXiv: q-alg/9605024 | DOI | MR | Zbl
[10] Felder G., Varchenko A., “On representations of the elliptic quantum group $E_{\tau,\eta}({\rm sl}_2)$”, Comm. Math. Phys., 181 (1996), 741–761, arXiv: q-alg/9601003 | DOI | MR | Zbl
[11] Filali G., Kitanine N., “The partition function of the trigonometric sos model with a reflecting end”, J. Stat. Mech. Theory Exp., 2010:6 (2010), L06001, 11 pp., arXiv: 1004.1015 | DOI | MR
[12] Gervais J.-L., Neveu A., “Novel triangle relation and absence of tachyons in Liouville string field theory”, Nuclear Phys. B, 238 (1984), 125–141 | DOI | MR
[13] Ghoshal S., Zamolodchikov A., “Boundary $S$ matrix and boundary state in two-dimensional integrable quantum field theory”, Internat. J. Modern Phys. A, 9 (1994), 3841–3885, arXiv: hep-th/9306002 | DOI | MR | Zbl
[14] Izergin A. G., “Partition function of the six-vertex model in a finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | Zbl
[15] Izergin A. G., Korepin V. E., “The quantum inverse scattering method approach to correlation functions”, Comm. Math. Phys., 94 (1984), 67–92 | DOI | MR | Zbl
[16] Kitanine N., Kozlowski K. K., Maillet J. M., Niccoli G., Slavnov N. A., Terras V., “Correlation functions of the open XXZ chain. I”, J. Stat. Mech. Theory Exp., 2007:10 (2007), P10009, 37 pp., arXiv: 0707.1995 | DOI | MR
[17] Kitanine N., Kozlowski K. K., Maillet J. M., Niccoli G., Slavnov N. A., Terras V., “On correlation functions of the open XXZ chain. II”, J. Stat. Mech. Theory Exp., 2008:7 (2008), P07010, 33 pp., arXiv: 0803.3305 | DOI | MR
[18] Kitanine N., Maillet J. M., Terras V., “Form factors of the XXZ Heisenberg spin-1/2 finite chain”, Nuclear Phys. B, 554 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl
[19] Kitanine N., Maillet J. M., Terras V., “Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl
[20] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[21] Nepomechie R. I., “Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms”, J. Phys. A: Math. Gen., 37 (2004), 433–440, arXiv: hep-th/0304092 | DOI | MR | Zbl
[22] Nepomechie R. I., Ravanini F., “Completeness of the Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms”, J. Phys. A: Math. Gen., 36 (2003), 11391–11401, arXiv: hep-th/0307095 | DOI | MR | Zbl
[23] Pakuliak S., Rubtsov V., Silantyev A., “The SOS model partition function and the elliptic weight functions”, J. Phys. A: Math. Theor., 41 (2008), 295204, 20 pp., arXiv: 0802.0195 | DOI | MR | Zbl
[24] Rosengren H., “An Izergin–Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices”, Adv.in Appl. Math., 43 (2009), 137–155, arXiv: 0801.1229 | DOI | MR | Zbl
[25] Sklyanin E., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl
[26] Takhtajan L. A., Faddeev L. D., “The quantum method of the inverse problem and the heisenberg XYZ model”, Russ. Math. Surveys, 34:5 (1979), 11–68 | DOI
[27] Tsuchiya O., “Determinant formula for the six-vertex model with reflecting end”, J. Math. Phys., 39 (1998), 5946–5951, arXiv: solv-int/9804010 | DOI | MR | Zbl
[28] Wang Y.-S., “The scalar products and the norm of Bethe eigenstates for the boundary XXX Heisenberg spin-1/2 finite chain”, Nuclear Phys. B, 622 (2002), 633–649 | DOI | MR | Zbl
[29] Yang W.-L., Chen X., Feng J., Hao K., Hou B.-Y., Shi K.-J., Zhang Y.-Z., “Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms”, J. High Energy Phys., 2011:1 (2011), 006, 26 pp., arXiv: 1011.4719 | DOI | MR
[30] Yang W.-L., Zhang Y.-Z., “On the second reference state and complete eigenstates of the open XXZ chain”, J. High Energy Phys., 2007:4 (2007), 044, 11 pp., arXiv: hep-th/0703222 | DOI | MR | Zbl
[31] Yang W.-L., Zhang Y.-Z., “Drinfeld twists of the open XXZ chain with non-diagonal boundary terms”, Nuclear Phys. B, 831 (2010), 408–428, arXiv: 1011.4120 | DOI | MR | Zbl