Mots-clés : canonical quantization
@article{SIGMA_2011_7_a109,
author = {Guillermo Chac\'on-Acosta and Elisa Manrique and Leonardo Dagdug and Hugo A. Morales-T\'ecotl},
title = {Statistical {Thermodynamics} of {Polymer} {Quantum} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a109/}
}
TY - JOUR AU - Guillermo Chacón-Acosta AU - Elisa Manrique AU - Leonardo Dagdug AU - Hugo A. Morales-Técotl TI - Statistical Thermodynamics of Polymer Quantum Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a109/ LA - en ID - SIGMA_2011_7_a109 ER -
%0 Journal Article %A Guillermo Chacón-Acosta %A Elisa Manrique %A Leonardo Dagdug %A Hugo A. Morales-Técotl %T Statistical Thermodynamics of Polymer Quantum Systems %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a109/ %G en %F SIGMA_2011_7_a109
Guillermo Chacón-Acosta; Elisa Manrique; Leonardo Dagdug; Hugo A. Morales-Técotl. Statistical Thermodynamics of Polymer Quantum Systems. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a109/
[1] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[2] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[3] Bojowald M., “Loop quantum cosmology”, Living Rev. Relativity, 8 (2005), 11, 99 pp. ; arXiv: gr-qc/0601085 | MR | Zbl
[4] Bojowald M., “Absence of a singularity in loop quantum cosmology”, Phys. Rev. Lett., 86 (2001), 5227–5230 ; arXiv: gr-qc/0102069 | DOI | MR
[5] Bojowald M., “Quantum nature of cosmological bounce”, Gen. Relativity Gravitation, 40 (2008), 2659–2683 ; arXiv: 0801.4001 | DOI | MR | Zbl
[6] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang: improved dynamics”, Phys. Rev. D, 74 (2006), 084003, 23 pp. ; arXiv: gr-qc/0607039 | DOI | MR | Zbl
[7] Rovelli C., “Black hole entropy from loop quantum gravity”, Phys. Rev. Lett., 77 (1996), 3288–3291 ; arXiv: gr-qc/9603063 | DOI | MR | Zbl
[8] Ashtekar A., Baez J., Corichi A., Krasnov K., “Quantum geometry and black hole entropy”, Phys. Rev. Lett., 80 (1998), 904–907 ; arXiv: gr-qc/9710007 | DOI | MR | Zbl
[9] Domagala M., Lewandowski J., “Black-hole entropy from quantum geometry”, Classical Quantum Gravity, 21 (2004), 5233–5243 ; arXiv: gr-qc/0407051 | DOI | MR | Zbl
[10] Kolb E.W., Turner M.S., The early universe, Paperback Ed. Westview Press, 1994 | Zbl
[11] Weinberg S., Cosmology, Oxford University Press, Oxford, 2008 | MR | Zbl
[12] Grishchuk L.P., Sidorov Y.V., “Relic graviton and the birth of the universe”, Classical Quantum Gravity, 6 (1989), L155–L160 | DOI
[13] Grishchuk L.P., Sidorov Y.V., “Squeezed quantum states of relic gravitons and primordial density fluctuations”, Phys. Rev. D, 42 (1990), 3413–3421 | DOI | MR
[14] Mielczarek J., Szydłowski M., “Relic gravitons as the observable for loop quantum cosmology”, Phys. Lett. B, 657 (2007), 20–26 ; arXiv: 0705.4449 | DOI
[15] Mielczarek J., Szydłowski M., Relic gravitons from super-inflation, arXiv: 0710.2742
[16] Bojowald M., Hossain G.M., “Loop quantum gravity corrections to gravitational wave dispersion”, Phys. Rev. D, 77 (2008), 023508, 14 pp. ; arXiv: 0709.2365 | DOI | MR
[17] Mielczarek J., “Gravitational waves from the big bounce”, J. Cosmol. Astropart. Phys., 11 (2008), 011, 17 pp. ; arXiv: 0807.0712 | DOI | MR
[18] Ashtekar A., Taveras V., Varadarajan M., “Information is not lost in the evaporation of 2D black holes”, Phys. Rev. Lett., 100 (2008), 211302, 4 pp., arXiv: ; Ashtekar A., Pretorius F., Ramazanoğlu F.M., “Evaporation of two-dimensional black holes”, Phys. Rev. D, 83 (2011), 044040, 18 pp., arXiv: 0801.18111012.0077 | DOI | MR | DOI
[19] Ashtekar A., Fairhurst S., Willis J.L., “Quantum gravity, shadow states and quantum mechanics”, Classical Quantum Gravity, 20 (2003), 1031–1061 ; arXiv: gr-qc/0207106 | DOI | MR | Zbl
[20] Corichi A., Vukašinac T., Zapata J.A., “Polymer quantum mechanics and its continuum limit”, Phys. Rev. D, 76 (2007), 044016, 16 pp. ; arXiv: 0704.0007 | DOI | MR
[21] Corichi A., Vukašinac T., Zapata J.A., “Hamiltonian and physical Hilbert space in polymer quantum mechanics”, Classical Quantum Gravity, 24 (2007), 1495–1511 ; arXiv: gr-qc/0610072 | DOI | MR | Zbl
[22] Beaume R., Manuceau J., Pellet A., Sirugue M., “Translation invariant states in quantum mechanics”, Comm. Math. Phys., 38 (1974), 29–45 ; Acerbi F., Morchio G., Strocchi F., “Infrared singular fields and nonregular representations of canonical commutation relation algebras”, J. Math. Phys., 34 (1993), 899–914 ; Cavallaro F., Morchio G., Strocchi F., “A generalization of the Stone–von Neumann theorem to nonregular representations of the CCR-algebra”, Lett. Math. Phys., 47 (1999), 307–320 ; Halvorson H., “Complementarity of representations in quantum mechanics,”, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys., 35 (2004), 45–56, arXiv: quant-ph/0110102 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[23] Dobrev V., Doebner H.-D., Twarock R., “Quantum mechanics with difference operators”, Rep. Math. Phys., 50 (2002), 409–431 ; arXiv: quant-ph/0207077 | DOI | MR | Zbl
[24] Fredenhagen K., Reszewski F., “Polymer state approximation of Schrödinger wave functions”, Classical Quantum Gravity, 23 (2006), 6577–6584 ; arXiv: gr-qc/0606090 | DOI | MR | Zbl
[25] Velhinho J.M., “The quantum configuration space of loop quantum cosmology”, Classical Quantum Gravity, 24 (2007), 3745–3758 ; arXiv: 0704.2397 | DOI | MR | Zbl
[26] Chiou D.-W., “Galileo symmetries in polymer particle representation”, Classical Quantum Gravity, 24 (2007), 2603–2620 ; arXiv: gr-qc/0612155 | DOI | MR | Zbl
[27] Husain V., Louko J., Winkler O., “Quantum gravity and the Coulomb potential”, Phys. Rev. D, 76 (2007), 084002, 8 pp. ; arXiv: 0707.0273 | DOI | MR
[28] Kunstatter G., Louko J., Ziprick J., “Polymer quantization, singularity resolution, and the $1/r^2$ potential”, Phys. Rev. A, 79 (2009), 032104, 9 pp. ; arXiv: 0809.5098 | DOI | MR
[29] Amelino-Camelia G., Ellis J., Mavromatos N.E., Nanopoulos D.V., Sarkar S., “Tests of quantum gravity from observations of $\gamma$-ray bursts”, Nature, 393 (1998), 763–765 | DOI
[30] Amelino-Camelia G., “Introduction to quantum gravity phenomenology,”, Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Physics, 669, Springer-Verlag, Berlin, 2005, 59–100 | DOI
[31] Kalayana Rama S., “Some consequences of the generalised uncertainty principle: statistical mechanical, cosmological, and varying speed of light”, Phys. Lett. B, 519 (2001), 103–110 ; arXiv: hep-th/0107255 | DOI | MR | Zbl
[32] Nozari K., Mehdipour H., “Implications of minimal length scale on the statistical mechanics of ideal gas”, Chaos Solitons Fractals, 32 (2007), 1637–1644 ; arXiv: hep-th/0601096 | DOI | MR
[33] Nozari K., Fazlpour B., “Generalized uncertainty principle, modified dispersion relations and the early universe thermodynamics”, Gen. Relativity Gravitation, 38 (2006), 1661–1679 ; arXiv: gr-qc/0601092 | DOI | MR | Zbl
[34] Nozari K., Sefidgar A.S., “The effect of modified dispersion relations on the thermodynamics of black-body radiation”, Chaos Solitons Fractals, 38 (2008), 339–347 | DOI
[35] Camacho A., Macías A., “Thermodynamics of a photon gas and deformed dispersion relations”, Gen. Relativity Gravitation, 39 (2007), 1175–1183 ; arXiv: gr-qc/0702150 | DOI | MR | Zbl
[36] Colladay D., McDonald P., “Statistical mechanics and Lorentz violation”, Phys. Rev. D, 70 (2004), 125007, 8 pp. ; arXiv: hep-ph/0407354 | DOI
[37] Yépez H., Romero J.M., Zamora A., Corrections to the Planck's radiation law from loop quantum gravity, arXiv: hep-th/0407072
[38] Alfaro J., Morales-Técotl H.A., Urrutia L.F., “Loop quantum gravity and light propagation”, Phys. Rev. D, 65 (2002), 103509, 18 pp., arXiv: hep-th/0108061 | DOI | MR
[39] Hossain G.M., Husain V., Seahra S.S., “Background-independent quantization and the uncertainty principle”, Classical Quantum Gravity, 27 (2010), 165013, 8 pp. ; arXiv: 1003.2207 | DOI | MR | Zbl
[40] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press Inc., New York, 1980 | MR
[41] Peltola A., Kunstatter G., “Effective polymer dynamics of $D$-dimensional black hole interiors”, Phys. Rev. D, 80 (2009), 044031, 13 pp. ; arXiv: 0902.1746 | DOI | MR
[42] Hossain G.M., Husain V., Seahra S.S., “Nonsingular inflationary universe from polymer matter”, Phys. Rev. D, 81 (2010), 024005, 5 pp. ; arXiv: 0906.2798 | DOI
[43] Kunstatter G., Louko J., Peltola A., “Polymer quantization of the Einstein–Rosen wormhole throat”, Phys. Rev. D, 81 (2010), 024034, 10 pp. ; arXiv: 0910.3625 | DOI
[44] Battisti M.V., Lecian O.M., Montani G., “Polymer quantum dynamics of the Taub universe”, Phys. Rev. D, 78 (2008), 103514, 9 pp. ; arXiv: 0806.0768 | DOI | MR
[45] Battisti M.V., Lecian O.M., Montani G., GUP vs polymer quantum cosmology: the Taub model, arXiv: 0903.3836
[46] Creutz M., Quarks, gluons, and lattices, Cambridge University Press, Cambridge, 1983
[47] Hossain G.M., Husain V., Seahra S., “Propagator in polymer quantum field theory”, Phys. Rev. D, 82 (2010), 124032, 5 pp. | DOI
[48] Chalbaud E., Gallinar J.-P., Mata G., “The quantum harmonic oscillator on a lattice”, J. Phys. A: Math. Gen., 19 (1986), L385–L390 | DOI | MR
[49] Abramowitz M., Stegun I., Handbook of mathematical functions, Dover, 1968
[50] Baker G.L., Blackburn J.A., Smith H.J.T., “The quantum pendulum: small and large”, Amer. J. Phys., 70 (2002), 525–531 | DOI
[51] Martin J., Brandenberger R.H., “Trans-Planckian problem of inflationary cosmology”, Phys. Rev. D, 63 (2001), 123501, 16 pp. ; arXiv: hep-th/0005209 | DOI
[52] Doncheski M.A., Robinett R.W., “Wave packet revivals and the energy eigenvalue spectrum of the quantum pendulum”, Ann. Physics, 308 (2003), 578–598 ; arXiv: quant-ph/0307079 | DOI | Zbl
[53] Elaydi S., An introduction to difference equations, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1996 | MR | Zbl
[54] Gallinar J.P., Mattis D.C., “Motion of ‘hopping’ particles in a constant force field”, J. Phys. A: Math. Gen., 18 (1985), 2583–2589 | DOI
[55] Sakurai J.J., Modern quantum mechanics, Addison-Wesley, 1994
[56] Marder M.P., Condenseed matter physics, John Wiley Sons, Inc., 2010
[57] Kittel C., Introduction to solid state physics, John Wiley Sons, Inc., 1996
[58] Nozari K., Azizi T., “Some aspects of gravitational quantum mechanics”, Gen. Relativity Gravitation, 38 (2006), 735–742 ; arXiv: quant-ph/0507018 | DOI | MR | Zbl
[59] Pathria R.K., Statistical mechanics, Butterworth-Heinemann, 2001
[60] Swain J., “Exotic statistics for ordinary particles in quantum gravity”, Internat. J. Modern Phys. D, 17 (2008), 2475–2484 | DOI | MR | Zbl
[61] Chacón-Acosta G., Dagdug L., Morales-Técotl H., “On microstates counting in many body polymer quantum systems”, AIP Conf. Proc., 1396 (2011), 99–103 | DOI
[62] Naudts J., “Boltzmann entropy and the microcanonical ensemble”, Europhys. Lett., 69 (2005), 719–724 ; arXiv: cond-mat/0412683 | DOI
[63] Ramsey N.F., “Thermodynamics and statistical mechanics at negative absolute temperatures”, Phys. Rev., 103 (1956), 20–28 | DOI | Zbl
[64] Konopka T., Markopoulou F., Severini S., “Quantum graphity: a model of emergent locality”, Phys. Rev. D, 77 (2008), 104029, 15 pp., arXiv: 0801.0861 | DOI | MR
[65] Smoot G.F., Gorenstein M.V., Muller R.A., “Detection of anisotropy in the cosmic blackbody radiation”, Phys. Rev. Lett., 39 (1977), 898–901 ; Fixsen D.J. et al., “Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument”, Astrophys. J., 420 (1994), 445–449 ; Fixsen D.J. et al., “The cosmic microwave background spectrum from the full COBE FIRAS data set”, Astrophys. J., 473 (1996), 576–587, arXiv: astro-ph/9605054 | DOI | DOI | DOI
[66] Husain V., Mann R.B., “Thermodynamics and phases in quantum gravity”, Classical Quantum Gravity, 26 (2009), 075010, 6 pp. ; arXiv: 0812.0399 | DOI | MR | Zbl
[67] Agullo I., Barbero G. J.F., Borja E.F., Diaz-Polo J., Villaseñor E.J.S., “Detailed black hole state counting in loop quantum gravity”, Phys. Rev. D, 82 (2010), 084029, 31 pp. ; arXiv: 1101.3660 | DOI
[68] Li L.-F., Zhu J.-Y., “Thermodynamics in loop quantum cosmology”, Adv. High Energy Phys., 2009 (2009), 905705, 9 pp. ; arXiv: 0812.3544 | DOI | Zbl
[69] Bianchi E., “Black hole entropy, loop gravity, and polymer physics”, Classical Quantum Gravity, 28 (2011), 114006, 12 pp. ; arXiv: 1011.5628 | DOI | MR | Zbl
[70] Hamma A., Markopoulou F., “Background independent condensed matter models for quantum gravity”, New J. Phys., 13 (2011), 095006, 26 pp. ; arXiv: 1011.5754 | DOI
[71] Hamma A., Markopoulou F., Lloyd S., Caravelli F., Severini S., Markström K., “Quantum Bose–Hubbard model with an evolving graph as a toy model for emergent spacetime”, Phys. Rev. D, 81 (2010), 104032, 22 pp. ; arXiv: 0911.5075 | DOI
[72] Husain V., Seahra S., Webster E. (to appear)