Routh Reduction by Stages
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with the Lagrangian analogue of symplectic or point reduction by stages. We develop Routh reduction as a reduction technique that preserves the Lagrangian nature of the dynamics. To do so we heavily rely on the relation between Routh reduction and cotangent symplectic reduction. The main results in this paper are: (i) we develop a class of so called magnetic Lagrangian systems and this class has the property that it is closed under Routh reduction; (ii) we construct a transformation relating the magnetic Lagrangian system obtained after two subsequent Routh reductions and the magnetic Lagrangian system obtained after Routh reduction w.r.t. to the full symmetry group.
Keywords: symplectic reduction, Routh reduction, Lagrangian reduction, reduction by stages.
@article{SIGMA_2011_7_a108,
     author = {Bavo Langerock and Tom Mestdag and Joris Vankerschaver},
     title = {Routh {Reduction} by {Stages}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a108/}
}
TY  - JOUR
AU  - Bavo Langerock
AU  - Tom Mestdag
AU  - Joris Vankerschaver
TI  - Routh Reduction by Stages
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a108/
LA  - en
ID  - SIGMA_2011_7_a108
ER  - 
%0 Journal Article
%A Bavo Langerock
%A Tom Mestdag
%A Joris Vankerschaver
%T Routh Reduction by Stages
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a108/
%G en
%F SIGMA_2011_7_a108
Bavo Langerock; Tom Mestdag; Joris Vankerschaver. Routh Reduction by Stages. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a108/

[1] Abraham R., Marsden J.E., Foundations of mechanics, Advanced Book Program, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1978 | MR | Zbl

[2] Adamec L., “A route to Routh – the classical setting”, J. Nonlinear Math. Phys., 18 (2011), 87–107 | DOI | MR | Zbl

[3] Arnold V.I., Kozlov V.V., Neishtadt A.I., Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 1997 | MR

[4] Cendra H., Marsden J.E., Ratiu T.S., Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152, no. 722, 2001 | MR

[5] Cortés J., de León M., Marrero J.C., Martín de Diego D., Martínez E., “A survey of Lagrangian mechanics and control on Lie algebroids and groupoids”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509–558 ; arXiv: math-ph/0511009 | DOI | MR | Zbl

[6] Crampin M., Mestdag T., “Routh's procedure for non-Abelian symmetry groups”, J. Math. Phys., 49 (2008), 032901, 28 pp. ; arXiv: 0802.0528 | DOI | MR | Zbl

[7] Echeverría-Enríquez A., Muñoz-Lecanda M.C., Román-Roy N., “Reduction of presymplectic manifolds with symmetry”, Rev. Math. Phys., 11 (1999), 1209–1247 ; arXiv: math-ph/9911008 | DOI | MR | Zbl

[8] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, Interscience Publishers, New York – London, 1963 ; Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Interscience Publishers, New York – London, 1969 | MR | Zbl | MR | Zbl

[9] Lamb H., Hydrodynamics, Reprint of the 1932 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993 | MR

[10] Langerock B., Cantrijn F., Vankerschaver J., “Routhian reduction for quasi-invariant Lagrangians”, J. Math. Phys., 51 (2010), 022902, 20 pp. ; arXiv: 0912.0863 | DOI | MR

[11] Langerock B., Castrillón Lopéz M., “Routh reduction for singular Lagrangians”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1451–1489 ; arXiv: 1007.0325 | DOI | MR | Zbl

[12] Marsden J.E., Misiołek G., Ortega J.P., Perlmutter M., Ratiu T.S., Hamiltonian reduction by stages, Lecture Notes in Mathematics, 1913, Springer, Berlin, 2007 | MR | Zbl

[13] Marsden J.E., Montgomery R., Ratiu T.S., Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88, no. 436, 1990 | MR

[14] Marsden J.E., Ratiu T.S., Scheurle J., “Reduction theory and the Lagrange–Routh equations”, J. Math. Phys., 41 (2000), 3379–3429 | DOI | MR | Zbl

[15] Mestdag T., Crampin M., “Invariant Lagrangians, mechanical connections and the Lagrange–Poincaré equations”, J. Phys. A: Math. Theor., 41 (2008), 344015, 20 pp. ; arXiv: 0802.0146 | DOI | MR | Zbl

[16] Mikityuk I.V., Stepin A.M., “A sufficient condition for stepwise reduction: proof and applications”, Sb. Math., 199 (2008), 663–671 | DOI | MR

[17] Milne-Thomson L., Theoretical hydrodynamics, 5th ed., MacMillan, London, 1968 | Zbl

[18] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[19] Pars L.A., A treatise on analytical dynamics, Heinemann Educational Books Ltd., London, 1965 | Zbl

[20] Vankerschaver J., Kanso E., Marsden J.E., “The dynamics of a rigid body in potential flow with circulation”, Regul. Chaotic Dyn., 15 (2010), 606–629 ; arXiv: 1003.0080 | DOI | MR | Zbl