@article{SIGMA_2011_7_a108,
author = {Bavo Langerock and Tom Mestdag and Joris Vankerschaver},
title = {Routh {Reduction} by {Stages}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a108/}
}
Bavo Langerock; Tom Mestdag; Joris Vankerschaver. Routh Reduction by Stages. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a108/
[1] Abraham R., Marsden J.E., Foundations of mechanics, Advanced Book Program, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1978 | MR | Zbl
[2] Adamec L., “A route to Routh – the classical setting”, J. Nonlinear Math. Phys., 18 (2011), 87–107 | DOI | MR | Zbl
[3] Arnold V.I., Kozlov V.V., Neishtadt A.I., Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 1997 | MR
[4] Cendra H., Marsden J.E., Ratiu T.S., Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152, no. 722, 2001 | MR
[5] Cortés J., de León M., Marrero J.C., Martín de Diego D., Martínez E., “A survey of Lagrangian mechanics and control on Lie algebroids and groupoids”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509–558 ; arXiv: math-ph/0511009 | DOI | MR | Zbl
[6] Crampin M., Mestdag T., “Routh's procedure for non-Abelian symmetry groups”, J. Math. Phys., 49 (2008), 032901, 28 pp. ; arXiv: 0802.0528 | DOI | MR | Zbl
[7] Echeverría-Enríquez A., Muñoz-Lecanda M.C., Román-Roy N., “Reduction of presymplectic manifolds with symmetry”, Rev. Math. Phys., 11 (1999), 1209–1247 ; arXiv: math-ph/9911008 | DOI | MR | Zbl
[8] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, Interscience Publishers, New York – London, 1963 ; Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Interscience Publishers, New York – London, 1969 | MR | Zbl | MR | Zbl
[9] Lamb H., Hydrodynamics, Reprint of the 1932 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993 | MR
[10] Langerock B., Cantrijn F., Vankerschaver J., “Routhian reduction for quasi-invariant Lagrangians”, J. Math. Phys., 51 (2010), 022902, 20 pp. ; arXiv: 0912.0863 | DOI | MR
[11] Langerock B., Castrillón Lopéz M., “Routh reduction for singular Lagrangians”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1451–1489 ; arXiv: 1007.0325 | DOI | MR | Zbl
[12] Marsden J.E., Misiołek G., Ortega J.P., Perlmutter M., Ratiu T.S., Hamiltonian reduction by stages, Lecture Notes in Mathematics, 1913, Springer, Berlin, 2007 | MR | Zbl
[13] Marsden J.E., Montgomery R., Ratiu T.S., Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88, no. 436, 1990 | MR
[14] Marsden J.E., Ratiu T.S., Scheurle J., “Reduction theory and the Lagrange–Routh equations”, J. Math. Phys., 41 (2000), 3379–3429 | DOI | MR | Zbl
[15] Mestdag T., Crampin M., “Invariant Lagrangians, mechanical connections and the Lagrange–Poincaré equations”, J. Phys. A: Math. Theor., 41 (2008), 344015, 20 pp. ; arXiv: 0802.0146 | DOI | MR | Zbl
[16] Mikityuk I.V., Stepin A.M., “A sufficient condition for stepwise reduction: proof and applications”, Sb. Math., 199 (2008), 663–671 | DOI | MR
[17] Milne-Thomson L., Theoretical hydrodynamics, 5th ed., MacMillan, London, 1968 | Zbl
[18] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, Providence, RI, 2002 | MR | Zbl
[19] Pars L.A., A treatise on analytical dynamics, Heinemann Educational Books Ltd., London, 1965 | Zbl
[20] Vankerschaver J., Kanso E., Marsden J.E., “The dynamics of a rigid body in potential flow with circulation”, Regul. Chaotic Dyn., 15 (2010), 606–629 ; arXiv: 1003.0080 | DOI | MR | Zbl