Mots-clés : Laplace's equation
@article{SIGMA_2011_7_a107,
author = {Howard S. Cohl},
title = {Fundamental {Solution} of {Laplace's} {Equation} in {Hyperspherical} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a107/}
}
Howard S. Cohl. Fundamental Solution of Laplace's Equation in Hyperspherical Geometry. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a107/
[1] Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge, Cambridge University Press, 1999 | MR | Zbl
[2] Berakdar J., Concepts of highly excited electronic systems, Wiley-VCH, New York, 2003
[3] Bers L., John F., Schechter M. (Editors), Partial differential equations, Interscience Publishers, New York, 1964 | MR | Zbl
[4] Cooper J.W., Fano U., Prats F., “Classification of two-electron excitation levels of helium”, Phys. Rev. Lett., 10 (1963), 518–521 | DOI
[5] Delves L.M., “Tertiary and general-order collisions. II”, Nuclear Phys., 20 (1960), 275–308 | DOI
[6] Doob J.L., Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften, 262, Springer-Verlag, New York, 1984 | MR | Zbl
[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. I, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981
[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. II, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981
[9] Fano U., “Correlations of two excited electrons”, Rep. Progr. Phys., 46 (1983), 97–165 | DOI
[10] Fock V., “On the Schrödinger equation of the helium atom. I”, Norske Vid. Selsk. Forhdl., 31 (1958), 22, 7 pp. | MR | Zbl
[11] Folland G.B., Introduction to partial differential equations, Mathematical Notes, Princeton University Press, Princeton, N.J., 1976 | MR | Zbl
[12] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Grundlehren der mathematischen Wissenschaften, 224, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl
[13] Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007 | MR | Zbl
[14] Grigor'yan A.A., “Existence of the Green's function on a manifold”, Russ. Math. Surv., 38:1 (1983), 190–191 | DOI | MR
[15] Grigor'yan A.A., “The existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds”, Math. USSR Sb., 56 (1987), 349–358 | DOI
[16] Grigor'yan A.A., Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009 | MR
[17] Higgs P.W., “Dynamical symmetries in a spherical geometry. I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl
[18] Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., “Contractions of Lie algebras and separation of variables. The $n$-dimensional sphere”, J. Math. Phys., 40 (1999), 1549–1573 | DOI | MR
[19] Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., “Contractions of Lie algebras and the separation of variables: interbase expansions”, J. Phys. A: Math. Gen., 34 (2001), 521–554 | DOI | MR
[20] Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., “Contraction and interbases expansions on $n$-sphere”, Quantum Theory and Symmetries (Kraków, 2001), World Sci. Publ., River Edge, NJ, 2002, 389–395 | DOI | MR
[21] Kalnins E.G., Miller W. Jr., Pogosyan G.S., “The Coulomb-oscillator relation on $n$-dimensional spheres and hyperboloids”, Phys. Atomic Nuclei, 65 (2002), 1086–1094 | DOI | MR
[22] Lee J.M., Riemannian manifolds, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997 | MR | Zbl
[23] Leemon H.I., “Dynamical symmetries in a spherical geometry. II”, J. Phys. A: Math. Gen., 12 (1979), 489–501 | DOI | MR | Zbl
[24] Lin C.D., “Hyperspherical coordinate approach to atomic and other Coulombic three-body systems”, Phys. Rep., 257 (1995), 1–83 | DOI
[25] Olevskiĭ M.N., “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables”, Mat. Sbornik N.S., 27 (1950), 379–426 | MR | Zbl
[26] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[27] Oprea J., Differential geometry and its applications, Classroom Resource Materials Series, 2nd ed., Mathematical Association of America, Washington, DC, 2007 | MR
[28] Pack R.T., Parker G.A., “Quantum reactive scattering in 3 dimensions using hyperspherical (APH) coordinates. Theory”, J. Chem. Phys., 87 (1987), 3888–3921 | DOI
[29] Schrödinger E., “Eigenschwingungen des sphärischen Raumes”, Comment. Pontificia Acad. Sci., 2 (1938), 321–364 | Zbl
[30] Schrödinger E., “A method of determining quantum-mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 9–16 | MR
[31] Smith F.T., “Generalized angular momentum in many-body collisions”, Phys. Rev., 120 (1960), 1058–1069 | DOI | MR | Zbl
[32] Takeuchi M., Modern spherical functions, Translations of Mathematical Monographs, 135, American Mathematical Society, Providence, RI, 1994 | MR
[33] Thurston W.P., Three-dimensional geometry and topology, v. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl
[34] Timofeev A.F., Integration of functions, OGIZ, Moscow – Leningrad, 1948 (in Russian) | MR
[35] Vilenkin N.Ja., Special functions and the theory of group representations, Translations of Mathematical Monographs, 22, American Mathematical Society, Providence, R.I., 1968 | MR | Zbl
[36] Vinitskiĭ S.I., Mardoyan L.G., Pogosyan G.S., Sissakian A.N., Strizh T.A., “Hydrogen atom in curved space. Expansion in free solutions on a three-dimensional sphere”, Phys. Atomic Nuclei, 56 (1993), 321–327
[37] Zernike F., Brinkman H.C., “Hypersphärische Funktionen und die in sphärische Bereichen orthogonalen Polynome”, Proc. Akad. Wet. Amsterdam, 38 (1935), 161–170
[38] Zhukov M.V., Danilin B.V., Fedorov D.V., Bang J.M., Thompson I.J., Vaagen J.S., “Bound state properties of Borromean halo nuclei: $^6$He and $^{11}$Li”, Phys. Rep., 231 (1993), 151–199 | DOI