Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Due to the isotropy of $d$-dimensional hyperspherical space, one expects there to exist a spherically symmetric fundamental solution for its corresponding Laplace–Beltrami operator. The $R$-radius hypersphere $\mathbf S_R^d$ with $R>0$, represents a Riemannian manifold with positive-constant sectional curvature. We obtain a spherically symmetric fundamental solution of Laplace's equation on this manifold in terms of its geodesic radius. We give several matching expressions for this fundamental solution including a definite integral over reciprocal powers of the trigonometric sine, finite summation expressions over trigonometric functions, Gauss hypergeometric functions, and in terms of the associated Legendre function of the second kind on the cut (Ferrers function of the second kind) with degree and order given by $d/2-1$ and $1-d/2$ respectively, with real argument between plus and minus one.
Keywords: hyperspherical geometry, fundamental solution, separation of variables, Ferrers functions.
Mots-clés : Laplace's equation
@article{SIGMA_2011_7_a107,
     author = {Howard S. Cohl},
     title = {Fundamental {Solution} of {Laplace's} {Equation} in {Hyperspherical} {Geometry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a107/}
}
TY  - JOUR
AU  - Howard S. Cohl
TI  - Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a107/
LA  - en
ID  - SIGMA_2011_7_a107
ER  - 
%0 Journal Article
%A Howard S. Cohl
%T Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a107/
%G en
%F SIGMA_2011_7_a107
Howard S. Cohl. Fundamental Solution of Laplace's Equation in Hyperspherical Geometry. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a107/

[1] Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge, Cambridge University Press, 1999 | MR | Zbl

[2] Berakdar J., Concepts of highly excited electronic systems, Wiley-VCH, New York, 2003

[3] Bers L., John F., Schechter M. (Editors), Partial differential equations, Interscience Publishers, New York, 1964 | MR | Zbl

[4] Cooper J.W., Fano U., Prats F., “Classification of two-electron excitation levels of helium”, Phys. Rev. Lett., 10 (1963), 518–521 | DOI

[5] Delves L.M., “Tertiary and general-order collisions. II”, Nuclear Phys., 20 (1960), 275–308 | DOI

[6] Doob J.L., Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften, 262, Springer-Verlag, New York, 1984 | MR | Zbl

[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. I, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981

[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. II, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981

[9] Fano U., “Correlations of two excited electrons”, Rep. Progr. Phys., 46 (1983), 97–165 | DOI

[10] Fock V., “On the Schrödinger equation of the helium atom. I”, Norske Vid. Selsk. Forhdl., 31 (1958), 22, 7 pp. | MR | Zbl

[11] Folland G.B., Introduction to partial differential equations, Mathematical Notes, Princeton University Press, Princeton, N.J., 1976 | MR | Zbl

[12] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Grundlehren der mathematischen Wissenschaften, 224, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl

[13] Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007 | MR | Zbl

[14] Grigor'yan A.A., “Existence of the Green's function on a manifold”, Russ. Math. Surv., 38:1 (1983), 190–191 | DOI | MR

[15] Grigor'yan A.A., “The existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds”, Math. USSR Sb., 56 (1987), 349–358 | DOI

[16] Grigor'yan A.A., Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009 | MR

[17] Higgs P.W., “Dynamical symmetries in a spherical geometry. I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl

[18] Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., “Contractions of Lie algebras and separation of variables. The $n$-dimensional sphere”, J. Math. Phys., 40 (1999), 1549–1573 | DOI | MR

[19] Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., “Contractions of Lie algebras and the separation of variables: interbase expansions”, J. Phys. A: Math. Gen., 34 (2001), 521–554 | DOI | MR

[20] Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., “Contraction and interbases expansions on $n$-sphere”, Quantum Theory and Symmetries (Kraków, 2001), World Sci. Publ., River Edge, NJ, 2002, 389–395 | DOI | MR

[21] Kalnins E.G., Miller W. Jr., Pogosyan G.S., “The Coulomb-oscillator relation on $n$-dimensional spheres and hyperboloids”, Phys. Atomic Nuclei, 65 (2002), 1086–1094 | DOI | MR

[22] Lee J.M., Riemannian manifolds, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997 | MR | Zbl

[23] Leemon H.I., “Dynamical symmetries in a spherical geometry. II”, J. Phys. A: Math. Gen., 12 (1979), 489–501 | DOI | MR | Zbl

[24] Lin C.D., “Hyperspherical coordinate approach to atomic and other Coulombic three-body systems”, Phys. Rep., 257 (1995), 1–83 | DOI

[25] Olevskiĭ M.N., “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables”, Mat. Sbornik N.S., 27 (1950), 379–426 | MR | Zbl

[26] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[27] Oprea J., Differential geometry and its applications, Classroom Resource Materials Series, 2nd ed., Mathematical Association of America, Washington, DC, 2007 | MR

[28] Pack R.T., Parker G.A., “Quantum reactive scattering in 3 dimensions using hyperspherical (APH) coordinates. Theory”, J. Chem. Phys., 87 (1987), 3888–3921 | DOI

[29] Schrödinger E., “Eigenschwingungen des sphärischen Raumes”, Comment. Pontificia Acad. Sci., 2 (1938), 321–364 | Zbl

[30] Schrödinger E., “A method of determining quantum-mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 9–16 | MR

[31] Smith F.T., “Generalized angular momentum in many-body collisions”, Phys. Rev., 120 (1960), 1058–1069 | DOI | MR | Zbl

[32] Takeuchi M., Modern spherical functions, Translations of Mathematical Monographs, 135, American Mathematical Society, Providence, RI, 1994 | MR

[33] Thurston W.P., Three-dimensional geometry and topology, v. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl

[34] Timofeev A.F., Integration of functions, OGIZ, Moscow – Leningrad, 1948 (in Russian) | MR

[35] Vilenkin N.Ja., Special functions and the theory of group representations, Translations of Mathematical Monographs, 22, American Mathematical Society, Providence, R.I., 1968 | MR | Zbl

[36] Vinitskiĭ S.I., Mardoyan L.G., Pogosyan G.S., Sissakian A.N., Strizh T.A., “Hydrogen atom in curved space. Expansion in free solutions on a three-dimensional sphere”, Phys. Atomic Nuclei, 56 (1993), 321–327

[37] Zernike F., Brinkman H.C., “Hypersphärische Funktionen und die in sphärische Bereichen orthogonalen Polynome”, Proc. Akad. Wet. Amsterdam, 38 (1935), 161–170

[38] Zhukov M.V., Danilin B.V., Fedorov D.V., Bang J.M., Thompson I.J., Vaagen J.S., “Bound state properties of Borromean halo nuclei: $^6$He and $^{11}$Li”, Phys. Rep., 231 (1993), 151–199 | DOI