Mots-clés : exceptional orthogonal polynomials, Rodrigues formulas
@article{SIGMA_2011_7_a106,
author = {Choon-Lin Ho and Satoru Odake and Ryu Sasaki},
title = {Properties of the {Exceptional} ($X_{\ell}$) {Laguerre} and {Jacobi} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a106/}
}
TY - JOUR
AU - Choon-Lin Ho
AU - Satoru Odake
AU - Ryu Sasaki
TI - Properties of the Exceptional ($X_{\ell}$) Laguerre and Jacobi Polynomials
JO - Symmetry, integrability and geometry: methods and applications
PY - 2011
VL - 7
UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a106/
LA - en
ID - SIGMA_2011_7_a106
ER -
%0 Journal Article
%A Choon-Lin Ho
%A Satoru Odake
%A Ryu Sasaki
%T Properties of the Exceptional ($X_{\ell}$) Laguerre and Jacobi Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a106/
%G en
%F SIGMA_2011_7_a106
Choon-Lin Ho; Satoru Odake; Ryu Sasaki. Properties of the Exceptional ($X_{\ell}$) Laguerre and Jacobi Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a106/
[1] Odake S., Sasaki R., “Infinitely many shape invariant potentials and new orthogonal polynomials”, Phys. Lett. B, 679 (2009), 414–417 ; arXiv: 0906.0142 | DOI | MR
[2] Odake S., Sasaki R., “Another set of infinitely many exceptional ($X_{\ell}$) Laguerre polynomials”, Phys. Lett. B, 684 (2010), 173–176 ; arXiv: 0911.3442 | DOI | MR
[3] Infeld L., Hull T.E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl
[4] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385 ; arXiv: hep-th/9405029 | DOI | MR
[5] Darboux G., “Sur une proposition relative aux équations linéaires”, C.R. Acad. Paris, 94 (1882), 1456–1459; Darboux G., Leçons sur la théorie des surfaces, v. 2, 2nd ed., Paris, Gauthier-Villars, 1915, 210–215; Pöschl G., Teller E., “Bemerkungen zur Quantenmechanik des anharmonischen Oszillators”, Z. Phys., 83 (1933), 143–151 | DOI
[6] Bochner S., “Über Sturm–Liouvillesche Polynomsysteme”, Math. Z., 29 (1929), 730–736 | DOI | MR | Zbl
[7] Gómez-Ullate D., Kamran N., Milson R., “An extension of Bochner's problem: exceptional invariant subspaces”, J. Approx. Theory, 162 (2010), 987–1006, arXiv: ; Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367, arXiv: 0805.33760807.3939 | DOI | MR | Zbl | DOI | MR | Zbl
[8] Gómez-Ullate D., Kamran N., Milson R., “Supersymmetry and algebraic Darboux transformations”, J. Phys. A: Math. Gen., 37 (2004), 10065–10078, arXiv: ; Gómez-Ullate D., Kamran N., Milson R., “Quasi-exact solvability and the direct approach to invariant subspaces”, J. Phys. A: Math. Gen., 38 (2005), 2005–2019, arXiv: nlin.SI/0402052nlin.SI/0401030 | DOI | MR | Zbl | DOI | MR | Zbl
[9] Gendenshtein L.E., “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry”, JETP Lett., 38 (1983), 356–359
[10] Quesne C., “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry”, J. Phys. A: Math. Theor., 41 (2008), 392001, 6 pp. ; arXiv: 0807.4087 | DOI | MR | Zbl
[11] Bagchi B., Quesne C., Roychoudhury R., “Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of ${\mathcal PT}$ symmetry”, Pramana J. Phys., 73 (2009), 337–347 ; arXiv: 0812.1488 | DOI
[12] Crum M.M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127 ; arXiv: physics/9908019 | DOI | MR
[13] Quesne C., “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics”, SIGMA, 5 (2009), 084, 24 pp. ; arXiv: 0906.2331 | DOI | MR | Zbl
[14] Tanaka T., “$\mathcal N$-fold supersymmetry and quasi-solvability associated with $X_2$-Laguerre polynomials”, J. Math. Phys., 51 (2010), 032101, 20 pp. ; arXiv: 0910.0328 | DOI | MR
[15] Odake S., Sasaki R., “Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials”, J. Math. Phys., 51 (2010), 053513, 9 pp. ; arXiv: 0911.1585 | DOI | MR
[16] Odake S., Sasaki R., “Infinitely many shape invariant discrete quantum mechanical systems and new exceptional orthogonal polynomials related to the Wilson and Askey–Wilson polynomials”, Phys. Lett. B, 682 (2009), 130–136 ; arXiv: 0909.3668 | DOI | MR
[17] Gómez-Ullate D., Kamran N., Milson R., “Exceptional orthogonal polynomials and the Darboux transformation”, J. Phys. A: Math. Theor., 43 (2010), 434016, 16 pp. ; arXiv: 1002.2666 | DOI | MR
[18] Sasaki R., Tsujimoto S., Zhedanov A., “Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux–Crum transformations”, J. Phys. A: Math. Theor., 43 (2010), 315204, 20 pp. ; arXiv: 1004.4711 | DOI | MR | Zbl
[19] Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[20] Heine H.E., Theorie der Kugelfunctionen und der verwandten Functionen, Berlin, 1878 ; Stieltjes T.J., “Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé”, Acta Math., 6 (1885), 321–326 | Zbl | DOI | MR