Properties of the Exceptional ($X_{\ell}$) Laguerre and Jacobi Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present various results on the properties of the four infinite sets of the exceptional $X_{\ell}$ polynomials discovered recently by Odake and Sasaki [Phys. Lett. B 679 (2009), 414–417; Phys. Lett. B 684 (2010), 173–176]. These $X_{\ell}$ polynomials are global solutions of second order Fuchsian differential equations with $\ell+3$ regular singularities and their confluent limits. We derive equivalent but much simpler looking forms of the $X_{\ell}$ polynomials. The other subjects discussed in detail are: factorisation of the Fuchsian differential operators, shape invariance, the forward and backward shift operations, invariant polynomial subspaces under the Fuchsian differential operators, the Gram–Schmidt orthonormalisation procedure, three term recurrence relations and the generating functions for the $X_{\ell}$ polynomials.
Keywords: Gram–Schmidt process, generating functions.
Mots-clés : exceptional orthogonal polynomials, Rodrigues formulas
@article{SIGMA_2011_7_a106,
     author = {Choon-Lin Ho and Satoru Odake and Ryu Sasaki},
     title = {Properties of the {Exceptional} ($X_{\ell}$) {Laguerre} and {Jacobi} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a106/}
}
TY  - JOUR
AU  - Choon-Lin Ho
AU  - Satoru Odake
AU  - Ryu Sasaki
TI  - Properties of the Exceptional ($X_{\ell}$) Laguerre and Jacobi Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a106/
LA  - en
ID  - SIGMA_2011_7_a106
ER  - 
%0 Journal Article
%A Choon-Lin Ho
%A Satoru Odake
%A Ryu Sasaki
%T Properties of the Exceptional ($X_{\ell}$) Laguerre and Jacobi Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a106/
%G en
%F SIGMA_2011_7_a106
Choon-Lin Ho; Satoru Odake; Ryu Sasaki. Properties of the Exceptional ($X_{\ell}$) Laguerre and Jacobi Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a106/

[1] Odake S., Sasaki R., “Infinitely many shape invariant potentials and new orthogonal polynomials”, Phys. Lett. B, 679 (2009), 414–417 ; arXiv: 0906.0142 | DOI | MR

[2] Odake S., Sasaki R., “Another set of infinitely many exceptional ($X_{\ell}$) Laguerre polynomials”, Phys. Lett. B, 684 (2010), 173–176 ; arXiv: 0911.3442 | DOI | MR

[3] Infeld L., Hull T.E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl

[4] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385 ; arXiv: hep-th/9405029 | DOI | MR

[5] Darboux G., “Sur une proposition relative aux équations linéaires”, C.R. Acad. Paris, 94 (1882), 1456–1459; Darboux G., Leçons sur la théorie des surfaces, v. 2, 2nd ed., Paris, Gauthier-Villars, 1915, 210–215; Pöschl G., Teller E., “Bemerkungen zur Quantenmechanik des anharmonischen Oszillators”, Z. Phys., 83 (1933), 143–151 | DOI

[6] Bochner S., “Über Sturm–Liouvillesche Polynomsysteme”, Math. Z., 29 (1929), 730–736 | DOI | MR | Zbl

[7] Gómez-Ullate D., Kamran N., Milson R., “An extension of Bochner's problem: exceptional invariant subspaces”, J. Approx. Theory, 162 (2010), 987–1006, arXiv: ; Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367, arXiv: 0805.33760807.3939 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Gómez-Ullate D., Kamran N., Milson R., “Supersymmetry and algebraic Darboux transformations”, J. Phys. A: Math. Gen., 37 (2004), 10065–10078, arXiv: ; Gómez-Ullate D., Kamran N., Milson R., “Quasi-exact solvability and the direct approach to invariant subspaces”, J. Phys. A: Math. Gen., 38 (2005), 2005–2019, arXiv: nlin.SI/0402052nlin.SI/0401030 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Gendenshtein L.E., “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry”, JETP Lett., 38 (1983), 356–359

[10] Quesne C., “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry”, J. Phys. A: Math. Theor., 41 (2008), 392001, 6 pp. ; arXiv: 0807.4087 | DOI | MR | Zbl

[11] Bagchi B., Quesne C., Roychoudhury R., “Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of ${\mathcal PT}$ symmetry”, Pramana J. Phys., 73 (2009), 337–347 ; arXiv: 0812.1488 | DOI

[12] Crum M.M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127 ; arXiv: physics/9908019 | DOI | MR

[13] Quesne C., “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics”, SIGMA, 5 (2009), 084, 24 pp. ; arXiv: 0906.2331 | DOI | MR | Zbl

[14] Tanaka T., “$\mathcal N$-fold supersymmetry and quasi-solvability associated with $X_2$-Laguerre polynomials”, J. Math. Phys., 51 (2010), 032101, 20 pp. ; arXiv: 0910.0328 | DOI | MR

[15] Odake S., Sasaki R., “Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials”, J. Math. Phys., 51 (2010), 053513, 9 pp. ; arXiv: 0911.1585 | DOI | MR

[16] Odake S., Sasaki R., “Infinitely many shape invariant discrete quantum mechanical systems and new exceptional orthogonal polynomials related to the Wilson and Askey–Wilson polynomials”, Phys. Lett. B, 682 (2009), 130–136 ; arXiv: 0909.3668 | DOI | MR

[17] Gómez-Ullate D., Kamran N., Milson R., “Exceptional orthogonal polynomials and the Darboux transformation”, J. Phys. A: Math. Theor., 43 (2010), 434016, 16 pp. ; arXiv: 1002.2666 | DOI | MR

[18] Sasaki R., Tsujimoto S., Zhedanov A., “Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux–Crum transformations”, J. Phys. A: Math. Theor., 43 (2010), 315204, 20 pp. ; arXiv: 1004.4711 | DOI | MR | Zbl

[19] Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[20] Heine H.E., Theorie der Kugelfunctionen und der verwandten Functionen, Berlin, 1878 ; Stieltjes T.J., “Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé”, Acta Math., 6 (1885), 321–326 | Zbl | DOI | MR