Mots-clés : Dolbeault
@article{SIGMA_2011_7_a104,
author = {Andrei V. Smilga},
title = {Dolbeault {Complex} on $S^4\setminus \{\,\cdot\,\}$ and $S^6\setminus\{\,\cdot\,\}$ through {Supersymmetric} {Glasses}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a104/}
}
TY - JOUR
AU - Andrei V. Smilga
TI - Dolbeault Complex on $S^4\setminus \{\,\cdot\,\}$ and $S^6\setminus\{\,\cdot\,\}$ through Supersymmetric Glasses
JO - Symmetry, integrability and geometry: methods and applications
PY - 2011
VL - 7
UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a104/
LA - en
ID - SIGMA_2011_7_a104
ER -
%0 Journal Article
%A Andrei V. Smilga
%T Dolbeault Complex on $S^4\setminus \{\,\cdot\,\}$ and $S^6\setminus\{\,\cdot\,\}$ through Supersymmetric Glasses
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a104/
%G en
%F SIGMA_2011_7_a104
Andrei V. Smilga. Dolbeault Complex on $S^4\setminus \{\,\cdot\,\}$ and $S^6\setminus\{\,\cdot\,\}$ through Supersymmetric Glasses. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a104/
[1] Eguchi T., Gilkey P.B., Hanson A.J., “Gravitation, gauge theories and differemtial geometry”, Phys. Rep., 66 (1980), 213–393 | DOI | MR
[2] Ivanov E.A., Smilga A.V., Dirac operator on complex manifolds and supersymmetric quantum mechanics, arXiv: 1012.2069
[3] Hull C.M., The geometry of supersymmetric quantum mechanics, arXiv: hep-th/9910028
[4] Smilga A.V., “How to quantize supersymmetric theories”, Nuclear Phys. B, 292 (1987), 363–380 | DOI | MR
[5] Smilga A.V., Supersymmetric proof of the Hirzebruch–Riemann–Roch theorem for non-Kähler manifolds, arXiv: 1109.2867
[6] Bismut J.-M., “A local index theorem for non-Kähler manifolds”, Math. Ann., 284 (1989), 681–699 | DOI | MR | Zbl
[7] Smilga A.V., Non-integer flux: why it does not work, arXiv: 1104.3986
[8] Shifman M.A., Smilga A.V., Vainshtein A.I., “On the Hilbert space of supersymmetric quantum systems”, Nuclear Phys. B, 299 (1988), 79–90 | DOI | MR
[9] Wu T.T., Yang C.N., “Dirac monopole without strings: monopole harmonics”, Nuclear Phys. B, 107 (1976), 365–380 | DOI | MR
[10] Konyushikhin M.A., Smilga A.V., “Self-duality and supersymmetry”, Phys. Lett. B, 689 (2010), 95–100, arXiv: 0910.5162 | DOI | MR
[11] Howe P.S., Papadopoulos G.,, “Ultra-violet behaviour of two-dimensional supersymmetric non-linear $\sigma$-models”, Nuclear Phys. B, 289 (1987), 264–276 ; Howe P.S., Papadopoulos G., “Twistor spaces for hyper-Kähler manifolds with torsion”, Phys. Lett. B, 379 (1996), 80–86, arXiv: ; Verbitsky M., “Hyperkähler manifolds with torsion, supersymmetry and Hodge theory”, Asian J. Math., 6 (2002), 679–712, arXiv: hep-th/9602108math.AG/0112215 | DOI | DOI | MR | MR | Zbl
[12] Delduc F., Ivanov E.A., $N=4$ mechanics of general $(4,4,0)$ multiplets, arXiv: 1107.1429
[13] Hirzebruch F., “Arithmetic genera and the theorem of Riemann–Roch for algebraic varietes”, Proc. Nat. Acad. Sci. USA, 40 (1954), 110–114 ; Hirzebruch F., Topological methods in algebraic geometry, Springer-Verlag, Berlin, 1978 ; Atiyah M.F., Singer I.M., “The index of elliptic operators. I”, Ann. of Math. (2), 87 (1968), 484–530 ; Atiyah M.F., Singer I.M., “The index of elliptic operators. III”, Ann. of Math. (2), 87 (1968), 546–604 ; Atiyah M.F., Singer I.M., “The index of elliptic operators. IV”, Ann. of Math. (2), 93 (1971), 119–138 ; Atiyah M.F., Singer I.M., “The index of elliptic operators. V”, Ann. of Math. (2), 93 (1971), 139–149 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[14] Alvarez-Gaumé L., “Supersymmetry and the Atiyah–Singer index theorem”, Comm. Math. Phys., 90 (1983), 161–173 ; Friedan D., Windey P., “Supersymmetric derivation of the Atiyah–Singer index and the chiral anomaly”, Nuclear Phys. B, 235 (1984), 395–416 ; Windey P., “Supersymmetric quantum mechanics and the Atiyah–Singer index theorem”, Acta Phys. Polon. B, 15 (1984), 435–452 | DOI | MR | Zbl | DOI | MR | MR
[15] Cecotti S., Girardello L., “Functional measure, topology and dynamical supersymmetry breaking”, Phys. Lett. B, 110 (1982), 39–43 ; Girardello L., Imbimbo C., Mukhi S., “On constant configurations and evaluation of the Witten index”, Phys. Lett. B, 132 (1983), 69–74 | DOI | MR | DOI | MR
[16] Obukhov Y.N., “Spectral geometry of the Riemann–Cartan space-time”, Nuclear Phys. B, 212 (1983), 237–254 ; Peeters K., Waldron A., “Spinors on manifolds with boundary: APS index theorem with torsion”, J. High Energy Phys., 1999:2 (1999), 024, 42 pp., arXiv: hep-th/9901016 | DOI | MR | DOI | MR | Zbl
[17] Blok B.Yu., Smilga A.V., “Effective zero-mode Hamiltonian in supersymmetric chiral nonabelian gauge theories”, Nuclear Phys. B, 287 (1987), 589–600 | DOI