Mots-clés : gravitational connection
@article{SIGMA_2011_7_a103,
author = {Steffen Gielen},
title = {The {Space} of {Connections} as the {Arena} for {(Quantum)} {Gravity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a103/}
}
Steffen Gielen. The Space of Connections as the Arena for (Quantum) Gravity. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a103/
[1] Arnowitt R.L., Deser S., Misner C.W., “The dynamics of general relativity”, Gravitation: an Introduction to Current Research, Chapter 7, ed. L. Witten, Wiley, New York, 1962, 227–265 ; arXiv: gr-qc/0405109 | MR
[2] Ashtekar A., “New variables for classical and quantum gravity”, Phys. Rev. Lett., 57 (1986), 2244–2247 | DOI | MR
[3] Ashtekar A., Lewandowski J., “Projective techniques and functional integration for gauge theories”, J. Math. Phys., 36 (1995), 2170–2191 ; arXiv: gr-qc/9411046 | DOI | MR | Zbl
[4] Barbero G. J.F., “Real Ashtekar variables for Lorentzian signature space times”, Phys. Rev. D, 51 (1995), 5507–5510 ; arXiv: gr-qc/9410014 | DOI | MR
[5] Barros e Sá N., “Hamiltonian analysis of general relativity with the Immirzi parameter”, Internat. J. Modern Phys. D, 10 (2001), 261–272 ; arXiv: gr-qc/0006013 | DOI | MR | Zbl
[6] Bellorin J., Restuccia A., On the consistency of the Horava theory, arXiv: 1004.0055
[7] Chern S.-S., Simons J., “Characteristic forms and geometric invariants”, Ann. of Math. (2), 99 (1974), 48–69 | DOI | MR | Zbl
[8] de Azcárraga J.A., Izquierdo J.M., Lie groups, Lie algebras, cohomology and some applications in physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[9] Deser S., Isham C.J.,, “Canonical vierbein form of general relativity”, Phys. Rev. D, 14 (1976), 2505–2510 | DOI | MR
[10] DeWitt B.S., “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160 (1967), 1113–1148 | DOI | Zbl
[11] Gibbons G.W., “$\mathrm{Sim}(n-2)$: very special relativity and its deformations, holonomy and quantum corrections”, AIP Conf. Proc., 1122 (2009), 63–71 | DOI | Zbl
[12] Giddings S.B., Strominger A., “Baby universe, third quantization and the cosmological constant”, Nuclear Phys. B, 321 (1989), 481–508 | DOI | MR
[13] Gielen S., Oriti D., Discrete and continuum third quantization of gravity, arXiv: 1102.2226
[14] Gielen S., Wise D.K., Spontaneously broken Lorentz symmetry for Ashtekar variables, in preparation
[15] Giulini D., “The superspace of geometrodynamics”, Gen. Relativity Gravitation, 41 (2009), 785–815 ; arXiv: 0902.3923 | DOI | MR | Zbl
[16] Greensite J., “Field theory as free fall”, Classical Quantum Gravity, 13 (1996), 1339–1351 ; arXiv: gr-qc/9508033 | DOI | MR | Zbl
[17] Halliwell J.J., Ortiz M.E., “Sum-over-histories origin of the composition laws of relativistic quantum mechanics and quantum cosmology”, Phys. Rev. D, 48 (1993), 748–768 ; arXiv: gr-qc/9211004 | DOI | MR
[18] Hojman R., Mukku C., Sayed W.A., “Parity violation in metric-torsion theories of gravitation”, Phys. Rev. D, 22 (1980), 1915–1921 | DOI
[19] Holst S., “Barbero's Hamiltonian derived from a generalized Hilbert–Palatini action”, Phys. Rev. D, 53 (1996), 5966–5969 ; arXiv: gr-qc/9511026 | DOI | MR
[20] Kodama H., “Holomorphic wave function of the Universe”, Phys. Rev. D, 42 (1990), 2548–2565 | DOI | MR
[21] Kuchař K., “General relativity: dynamics without symmetry”, J. Math. Phys., 22 (1981), 2640–2654 | DOI | MR | Zbl
[22] Oriti D., “The group field theory approach to quantum gravity”, in Approaches to Quantum Gravity, ed. D. Oriti, Cambridge University Press, Cambridge, 2009, 310–331; arXiv: gr-qc/0607032
[23] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[24] Samuel J., “Is Barbero's Hamiltonian formulation a gauge theory of Lorentzian gravity?”, Classical Quantum Gravity, 17 (2000), L141–L148 ; arXiv: gr-qc/0005095 | DOI | MR | Zbl
[25] Singer I.M., “The geometry of the orbit space for nonabelian gauge theories”, Phys. Scripta, 24 (1981), 817–820 | DOI | MR | Zbl
[26] Smolin L., Soo C., “The Chern–Simons invariant as the natural time variable for classical and quantum cosmology”, Nuclear Phys. B, 449 (1995), 289–314 ; arXiv: gr-qc/9405015 | DOI | MR | Zbl
[27] Thiemann T., “Reduced models for quantum gravity”, Proceedings of the 117th W.E. Heraeus Seminar “Canonical Gravity: From Classical to Quantum” (Bad Honnef, Germany, September 13–17, 1993), Lecture Notes in Phys., 434, eds. J. Ehlers and H. Friedrich, Springer, Berlin, 1994, 289–318 ; arXiv: gr-qc/9910010 | DOI | MR
[28] Wise D.K., “MacDowell–Mansouri gravity and Cartan geometry”, Classical Quantum Gravity, 27 (2010), 155010, 26 pp. ; arXiv: gr-qc/0611154 | DOI | MR | Zbl
[29] Wise D.K., “Symmetric space Cartan connections and gravity in three and four dimensions”, SIGMA, 5 (2009), 080, 18 pp. ; arXiv: 0904.1738 | DOI | MR | Zbl
[30] Witten E., A note on the Chern–Simons and Kodama wavefunctions, arXiv: gr-qc/0306083
[31] York J.W. Jr., “Role of conformal three-geometry in the dynamics of gravitation”, Phys. Rev. Lett., 28 (1972), 1082–1085 | DOI