The Space of Connections as the Arena for (Quantum) Gravity
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review some properties of the space of connections as the natural arena for canonical (quantum) gravity, and compare to the case of the superspace of 3-metrics. We detail how a 1-parameter family of metrics on the space of connections arises from the canonical analysis for general relativity which has a natural interpretation in terms of invariant tensors on the algebra of the gauge group. We also review the description of canonical GR as a geodesic principle on the space of connections, and comment on the existence of a time variable which could be used in the interpretation of the quantum theory.
Keywords: canonical quantum gravity, semisimple Lie algebras, infinite-dimensional manifolds.
Mots-clés : gravitational connection
@article{SIGMA_2011_7_a103,
     author = {Steffen Gielen},
     title = {The {Space} of {Connections} as the {Arena} for {(Quantum)} {Gravity}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a103/}
}
TY  - JOUR
AU  - Steffen Gielen
TI  - The Space of Connections as the Arena for (Quantum) Gravity
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a103/
LA  - en
ID  - SIGMA_2011_7_a103
ER  - 
%0 Journal Article
%A Steffen Gielen
%T The Space of Connections as the Arena for (Quantum) Gravity
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a103/
%G en
%F SIGMA_2011_7_a103
Steffen Gielen. The Space of Connections as the Arena for (Quantum) Gravity. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a103/

[1] Arnowitt R.L., Deser S., Misner C.W., “The dynamics of general relativity”, Gravitation: an Introduction to Current Research, Chapter 7, ed. L. Witten, Wiley, New York, 1962, 227–265 ; arXiv: gr-qc/0405109 | MR

[2] Ashtekar A., “New variables for classical and quantum gravity”, Phys. Rev. Lett., 57 (1986), 2244–2247 | DOI | MR

[3] Ashtekar A., Lewandowski J., “Projective techniques and functional integration for gauge theories”, J. Math. Phys., 36 (1995), 2170–2191 ; arXiv: gr-qc/9411046 | DOI | MR | Zbl

[4] Barbero G. J.F., “Real Ashtekar variables for Lorentzian signature space times”, Phys. Rev. D, 51 (1995), 5507–5510 ; arXiv: gr-qc/9410014 | DOI | MR

[5] Barros e Sá N., “Hamiltonian analysis of general relativity with the Immirzi parameter”, Internat. J. Modern Phys. D, 10 (2001), 261–272 ; arXiv: gr-qc/0006013 | DOI | MR | Zbl

[6] Bellorin J., Restuccia A., On the consistency of the Horava theory, arXiv: 1004.0055

[7] Chern S.-S., Simons J., “Characteristic forms and geometric invariants”, Ann. of Math. (2), 99 (1974), 48–69 | DOI | MR | Zbl

[8] de Azcárraga J.A., Izquierdo J.M., Lie groups, Lie algebras, cohomology and some applications in physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[9] Deser S., Isham C.J.,, “Canonical vierbein form of general relativity”, Phys. Rev. D, 14 (1976), 2505–2510 | DOI | MR

[10] DeWitt B.S., “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160 (1967), 1113–1148 | DOI | Zbl

[11] Gibbons G.W., “$\mathrm{Sim}(n-2)$: very special relativity and its deformations, holonomy and quantum corrections”, AIP Conf. Proc., 1122 (2009), 63–71 | DOI | Zbl

[12] Giddings S.B., Strominger A., “Baby universe, third quantization and the cosmological constant”, Nuclear Phys. B, 321 (1989), 481–508 | DOI | MR

[13] Gielen S., Oriti D., Discrete and continuum third quantization of gravity, arXiv: 1102.2226

[14] Gielen S., Wise D.K., Spontaneously broken Lorentz symmetry for Ashtekar variables, in preparation

[15] Giulini D., “The superspace of geometrodynamics”, Gen. Relativity Gravitation, 41 (2009), 785–815 ; arXiv: 0902.3923 | DOI | MR | Zbl

[16] Greensite J., “Field theory as free fall”, Classical Quantum Gravity, 13 (1996), 1339–1351 ; arXiv: gr-qc/9508033 | DOI | MR | Zbl

[17] Halliwell J.J., Ortiz M.E., “Sum-over-histories origin of the composition laws of relativistic quantum mechanics and quantum cosmology”, Phys. Rev. D, 48 (1993), 748–768 ; arXiv: gr-qc/9211004 | DOI | MR

[18] Hojman R., Mukku C., Sayed W.A., “Parity violation in metric-torsion theories of gravitation”, Phys. Rev. D, 22 (1980), 1915–1921 | DOI

[19] Holst S., “Barbero's Hamiltonian derived from a generalized Hilbert–Palatini action”, Phys. Rev. D, 53 (1996), 5966–5969 ; arXiv: gr-qc/9511026 | DOI | MR

[20] Kodama H., “Holomorphic wave function of the Universe”, Phys. Rev. D, 42 (1990), 2548–2565 | DOI | MR

[21] Kuchař K., “General relativity: dynamics without symmetry”, J. Math. Phys., 22 (1981), 2640–2654 | DOI | MR | Zbl

[22] Oriti D., “The group field theory approach to quantum gravity”, in Approaches to Quantum Gravity, ed. D. Oriti, Cambridge University Press, Cambridge, 2009, 310–331; arXiv: gr-qc/0607032

[23] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[24] Samuel J., “Is Barbero's Hamiltonian formulation a gauge theory of Lorentzian gravity?”, Classical Quantum Gravity, 17 (2000), L141–L148 ; arXiv: gr-qc/0005095 | DOI | MR | Zbl

[25] Singer I.M., “The geometry of the orbit space for nonabelian gauge theories”, Phys. Scripta, 24 (1981), 817–820 | DOI | MR | Zbl

[26] Smolin L., Soo C., “The Chern–Simons invariant as the natural time variable for classical and quantum cosmology”, Nuclear Phys. B, 449 (1995), 289–314 ; arXiv: gr-qc/9405015 | DOI | MR | Zbl

[27] Thiemann T., “Reduced models for quantum gravity”, Proceedings of the 117th W.E. Heraeus Seminar “Canonical Gravity: From Classical to Quantum” (Bad Honnef, Germany, September 13–17, 1993), Lecture Notes in Phys., 434, eds. J. Ehlers and H. Friedrich, Springer, Berlin, 1994, 289–318 ; arXiv: gr-qc/9910010 | DOI | MR

[28] Wise D.K., “MacDowell–Mansouri gravity and Cartan geometry”, Classical Quantum Gravity, 27 (2010), 155010, 26 pp. ; arXiv: gr-qc/0611154 | DOI | MR | Zbl

[29] Wise D.K., “Symmetric space Cartan connections and gravity in three and four dimensions”, SIGMA, 5 (2009), 080, 18 pp. ; arXiv: 0904.1738 | DOI | MR | Zbl

[30] Witten E., A note on the Chern–Simons and Kodama wavefunctions, arXiv: gr-qc/0306083

[31] York J.W. Jr., “Role of conformal three-geometry in the dynamics of gravitation”, Phys. Rev. Lett., 28 (1972), 1082–1085 | DOI