@article{SIGMA_2011_7_a102,
author = {Merced Montesinos and Mercedes Vel\'azquez},
title = {Equivalent and {Alternative} {Forms} for {BF} {Gravity} with {Immirzi} {Parameter}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a102/}
}
TY - JOUR AU - Merced Montesinos AU - Mercedes Velázquez TI - Equivalent and Alternative Forms for BF Gravity with Immirzi Parameter JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a102/ LA - en ID - SIGMA_2011_7_a102 ER -
Merced Montesinos; Mercedes Velázquez. Equivalent and Alternative Forms for BF Gravity with Immirzi Parameter. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a102/
[1] Ashtekar A., Lectures on non-perturbative canonical gravity, Notes prepared in collaboration with Ranjeet S. Tate, Advanced Series in Astrophysics and Cosmology, 6, World Scientific Publishing Co., Inc., River Edge, NJ, 1991 ; Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 ; Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 ; Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152, arXiv: ; Perez A., “Introduction to loop quantum gravity and spin foams”, Proceedings of 2nd International Conference on Fundamental Interactions (Domingos Martins, Brazil, June 6–12, 2004), Editora Rima, Sao Paulo, 2004, 221–295, arXiv: ; Rovelli C., “Loop quantum gravity”, Living Rev. Relativ., 11:5 (2008) gr-qc/0404018gr-qc/0409061http://www.livingreviews.org/lrr-2008-5 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR
[2] Perez A., “Spin foam models for quantum gravity”, Classical Quantum Gravity, 20 (2003), R43–R104, arXiv: ; Oriti D., “Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity”, Rep. Progr. Phys., 64 (2001), 1703–1757, arXiv: ; Baez J.C., “An introduction to spin foam models of BF theory and quantum gravity”, Geometry and Quantum Physics (Schladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 25–93, arXiv: ; Baez J.C., “Spin foam models”, Classical Quantum Gravity, 15 (1998), 1827–1858, arXiv: ; Engle J., Pereira R., Rovelli C., “Loop-quantum-gravity vertex amplitude”, Phys. Rev. Lett., 99 (2007), 161301, 4 pp., arXiv: ; Livine E.R., A short and subjective introduction to the spinfoam framework for quantum gravity, arXiv: gr-qc/0301113gr-qc/0106091gr-qc/9905087gr-qc/97090520705.23881101.5061 | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR
[3] Alexandrov S., The new vertices and canonical quantization, arXiv: ; Rovelli C., Speziale S., “Lorentz covariance of loop quantum gravity”, Phys. Rev. D, 83 (2011), 104029, 6 pp., arXiv: 1004.22601012.1739 | MR | DOI
[4] Plebański J.F., “On the separation of Einsteinian substructures”, J. Math. Phys., 18 (1977), 2511–2520 | DOI | MR | Zbl
[5] Samuel J., “A Lagrangian basis for Ashtekar's reformulation of canonical gravity”, Pramana J. Phys., 28 (1987), L429–L432 | DOI
[6] Jacobson T., Smolin L., “The left-handed spin connection as a variable for canonical gravity”, Phys. Lett. B, 196 (1987), 39–42 ; Jacobson T., Smolin L., “Covariant action for Ashtekar's form of canonical gravity”, Classical Quantum Gravity, 5 (1988), 583–594 | DOI | MR | DOI | MR
[7] Reisenberger M.P., “New constraints for canonical general relativity”, Nuclear Phys. B, 457 (1995), 643–687 ; arXiv: gr-qc/9505044 | DOI | MR | Zbl
[8] Capovilla R., Dell J., Jacobson T., “A pure spin-connection formulation of gravity”, Classical Quantum Gravity, 8 (1991), 59–73 | DOI | MR | Zbl
[9] Robinson D.C., “A Lagrangian formalism for the Einstein–Yang–Mills equations”, J. Math. Phys., 36 (1995), 3733–3742 | DOI | MR | Zbl
[10] Reisenberger M.P., “Classical Euclidean general relativity from ‘left-handed area = right-handed area’”, Classical Quantum Gravity, 16 (1999), 1357–1371 ; arXiv: gr-qc/9804061 | DOI | MR | Zbl
[11] De Pietri R., Freidel L., “so(4) Plebański action and relativistic spin-foam model”, Classical Quantum Gravity, 16 (1999), 2187–2196 ; arXiv: gr-qc/9804071 | DOI | MR | Zbl
[12] Capovilla R., Montesinos M., Prieto V.A., Rojas E., “BF gravity and the Immirzi parameter”, Classical Quantum Gravity, 18 (2001), L49–L52 ; arXiv: gr-qc/0102073 | DOI | MR | Zbl
[13] Barbero J.F., “Real Ashtekar variables for Lorentzian signature space-times”, Phys. Rev. D, 51 (1995), 5507–5510 ; arXiv: gr-qc/9410014 | DOI | MR
[14] Immirzi G., “Real and complex connections for canonical gravity”, Classical Quantum Gravity, 14 (1997), L177–L181 ; arXiv: gr-qc/9612030 | DOI | MR | Zbl
[15] Holst S., “Barbero's Hamiltonian derived from a generalized Hilbert–Palatini action”, Phys. Rev. D, 53 (1996), 5966–5969 ; arXiv: gr-qc/9511026 | DOI | MR
[16] Livine R.E., Oriti D., “Barrett–Crane spin foam model from generalized BF-type action for gravity”, Phys. Rev. D, 65 (2002), 044025, 12 pp. ; arXiv: gr-qc/0104043 | DOI | MR
[17] Engle J., Pereira R., Rovelli C., “Flipped spinfoam vertex and loop gravity”, Nuclear Phys. B, 798 (2008), 251–290 ; arXiv: 0708.1236 | DOI | MR | Zbl
[18] Montesinos M., Velázquez M., “BF gravity with Immirzi parameter and cosmological constant”, Phys. Rev. D, 81 (2010), 044033, 4 pp. ; arXiv: 1002.3836 | DOI | MR
[19] Velázquez M., BF gravity, matter couplings, and related theories, Ph.D. Thesis, Cinvestav, Mexico, 2011
[20] Cuesta V., Montesinos M., “Cartan's equations define a topological field theory of the BF type”, Phys. Rev. D, 76 (2007), 104004, 6 pp. | DOI | MR
[21] Liu L., Montesinos M., Perez A., “Topological limit of gravity admitting an SU(2) connection formulation”, Phys. Rev. D, 81 (2010), 064033, 9 pp. ; arXiv: 0906.4524 | DOI | MR
[22] Magaña R., Análisis hamiltoniano del término agregado por Holst a la lagrangiana de Palatini, M.Sc. Thesis, Cinvestav, Mexico, 2007
[23] Liu L., Analyse Hamiltonienne des Théories des champs invariantes par difféomorphismes, Memoire de Master 2, Centre de Physique Theorique de Luminy, Marseille, France, 2009
[24] Montesinos M., “Genuine covariant description of Hamiltonian dynamics”, Proceedings of VI Mexican School on Gravitation and Mathematical Physics “Approaches to Quantum Gravity” (Playa del Carmen, Mexico, November 21–27, 2004), J. Phys.: Conf. Ser., 24, eds. M. Alcubierre, J.L. Cervantes-Cota, M. Montesinos, 2005, 44–51 ; arXiv: gr-qc/0602072 | DOI
[25] Montesinos M., “Alternative symplectic structures for SO(3,1) and SO(4) four-dimensional BF theories”, Classical Quantum Gravity, 23 (2006), 2267–2278 ; arXiv: gr-qc/0603076 | DOI | MR | Zbl
[26] Smolin L., Speziale S., “A note on the Plebanski action with cosmological constant and an Immirzi parameter”, Phys. Rev. D, 81 (2010), 024032, 6 pp. ; arXiv: 0908.3388 | DOI | MR