@article{SIGMA_2011_7_a100,
author = {Simon Ruijsenaars},
title = {A {Relativistic} {Conical} {Function} and its {Whittaker} {Limits}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a100/}
}
Simon Ruijsenaars. A Relativistic Conical Function and its Whittaker Limits. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a100/
[1] Ruijsenaars S.N.M., “A generalized hypergeometric function satisfying four analytic difference equations of Askey–Wilson type”, Comm. Math. Phys., 206 (1999), 639–690 | DOI | MR | Zbl
[2] Ruijsenaars S.N.M., “A generalized hypergeometric function. II. Asymptotics and $D_4$ symmetry”, Comm. Math. Phys., 243 (2003), 389–412 | DOI | MR | Zbl
[3] Ruijsenaars S.N.M., “A generalized hypergeometric function. III. Associated Hilbert space transform”, Comm. Math. Phys., 243 (2003), 413–448 | DOI | MR | Zbl
[4] van de Bult F.J., “Ruijsenaars' hypergeometric function and the modular double of $\mathcal U_q(sl_2(\mathbb C))$”, Adv. Math., 204 (2006), 539–571 ; arXiv: math.QA/0501405 | DOI | MR | Zbl
[5] Faddeev L., “Modular double of a quantum group”, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000, 149–156 ; arXiv: math.QA/9912078 | MR | Zbl
[6] van de Bult F.J., Rains E.M., Stokman J.V., “Properties of generalized univariate hypergeometric functions”, Comm. Math. Phys., 275 (2007), 37–95 ; arXiv: math.CA/0607250 | DOI | MR | Zbl
[7] Spiridonov V.P., “Classical elliptic hypergeometric functions and their applications”, Elliptic Integrable Systems (2004, Kyoto), Rokko Lect. in Math., 18, Kobe University, 2005, 253–287; arXiv: math.CA/0511579
[8] Ruijsenaars S.N.M., “Parameter shifts, $D_4$ symmetry, and joint eigenfunctions for commuting Askey–Wilson type difference operators”, J. Phys. A: Math. Gen., 37 (2004), 481–495 | DOI | MR | Zbl
[9] Ruijsenaars S.N.M., “Quadratic transformations for a function that generalizes ${}_2F_1$ and the Askey–Wilson polynomials”, in Askey Festschrift issue (Bexbach 2003 Proceedings), Ramanujan J., 13 (2007), 339–364 | DOI | MR | Zbl
[10] Ruijsenaars S.N.M., “A relativistic hypergeometric function”, J. Comput. Appl. Math., 178 (2005), 393–417 | DOI | MR | Zbl
[11] Ruijsenaars S.N.M., “Generalized Lamé functions. II. Hyperbolic and trigonometric specializations”, J. Math. Phys., 40 (1999), 1627–1663 | DOI | MR | Zbl
[12] Ruijsenaars S.N.M., “Hilbert space theory for reflectionless relativistic potentials”, Publ. Res. Inst. Math. Sci., 36 (2000), 707–753 | DOI | MR | Zbl
[13] van Diejen J.F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2893–3004 | DOI | MR
[14] Ruijsenaars S.N.M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. I. The eigenfunction identities”, Comm. Math. Phys., 286 (2009), 629–657 | DOI | MR | Zbl
[15] Komori Y., Noumi M., Shiraishi J., “Kernel functions for difference operators of Ruijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp. ; arXiv: 0812.0279 | DOI | MR | Zbl
[16] Digital Library of Mathematical Functions, Release date 2010–05–07, National Institute of Standards and Technology http://dlmf.nist.gov
[17] Ruijsenaars S.N.M., “Relativistic Toda systems”, Comm. Math. Phys., 133 (1990), 217–247 | DOI | MR | Zbl
[18] Ruijsenaars S.N.M., “Action-angle maps and scattering theory for some finite-dimensional integrable systems. I. The pure soliton case”, Comm. Math. Phys., 115 (1988), 127–165 | DOI | MR | Zbl
[19] Kharchev S., Lebedev D., Semenov-Tian-Shansky M., “Unitary representations of $U_q(\mathfrak{sl}(2,\mathbb R))$, the modular double and the multiparticle $q$-deformed Toda chains”, Comm. Math. Phys., 225 (2002), 573–609 ; arXiv: hep-th/0102180 | DOI | MR | Zbl
[20] Olshanetsky M.A., Rogov V.-B.K., “Unitary representations of the quantum Lorentz group and quantum relativistic Toda chain”, Theoret. and Math. Phys., 130 (2002), 299–322 ; arXiv: math.QA/0110182 | DOI | MR
[21] Etingof P., “Whittaker functions on quantum groups and $q$-deformed Toda operators”, Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 9–25 ; arXiv: math.QA/9901053 | MR | Zbl
[22] Cherednik I., Ma X., A new take on spherical Whittaker and Bessel functions, arXiv: 0904.4324
[23] Ruijsenaars S.N.M., “Relativistic Lamé functions revisited”, J. Phys. A: Math. Gen., 34 (2001), 10595–10612 | DOI | MR | Zbl
[24] Ruijsenaars S.N.M., “Relativistic Lamé functions: completeness vs. polynomial asymptotics”, Papers dedicated to Tom Koornwinder, Indag. Math. (N.S.), 14 (2003), 515–544 | DOI | MR | Zbl
[25] Ruijsenaars S.N.M., “Finite-dimensional soliton systems”, Integrable and Superintegrable Systems, ed. B. Kupershmidt, World Sci. Publ., Teaneck, NJ, 1990, 165–206 | MR
[26] van Diejen J.F., Kirillov A.N., “Formulas for $q$-spherical functions using inverse scattering theory of reflectionless Jacobi operators”, Comm. Math. Phys., 210 (2000), 335–369 | DOI | MR | Zbl
[27] Koornwinder T.H., “Jacobi functions as limit cases of $q$-ultraspherical polynomials”, J. Math. Anal. Appl., 148 (1990), 44–54 | DOI | MR | Zbl
[28] Askey R., Andrews G. E., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[29] Badertscher E., Koornwinder T.H., “Continuous Hahn polynomials of differential operator argument and analysis on Riemannian symmetric spaces of constant curvature”, Canad. J. Math., 44 (1992), 750–773 | DOI | MR | Zbl
[30] Luke Y.L., The special functions and their approximations, v. I, Mathematics in Science and Engineering, 53, Academic Press, New York – London, 1969 | Zbl
[31] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. I, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981
[32] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. II, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981
[33] Ruijsenaars S.N.M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl
[34] Kurokawa N., “Multiple sine functions and Selberg zeta functions”, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 61–64 | DOI | MR | Zbl
[35] Faddeev L.D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 ; arXiv: hep-th/9504111 | DOI | MR | Zbl
[36] Woronowicz S.L., “Quantum exponential function”, Rev. Math. Phys., 12 (2000), 873–920 | DOI | MR | Zbl
[37] Ruijsenaars S.N.M., “A unitary joint eigenfunction transform for the A$\Delta$Os $\exp(ia_{\pm}d/dz)+\exp(2\pi z/a_{\mp})$”, J. Nonlinear Math. Phys., 12:2 (2005), 253–294 | DOI | MR | Zbl
[38] Barnes E.W., “The theory of the double gamma function”, Lond. Phil. Trans. (A), 196 (1901), 265–387 | DOI | Zbl
[39] Stokman J.V., “Hyperbolic beta integrals”, Adv. Math., 190 (2005), 119–160 ; arXiv: math.QA/0303178 | DOI | MR | Zbl
[40] van de Bult F.J., Hyperbolic hypergeometric functions, Ph.D. Thesis, University of Amsterdam, 2007
[41] Faddeev L.D., Kashaev R.M., Volkov A.Y., “Strongly coupled quantum discrete Liouville theory. I. Algebraic approach and duality”, Comm. Math. Phys., 219 (2001), 199–219 ; arXiv: hep-th/0006156 | DOI | MR | Zbl
[42] Kashaev R., “The non-compact quantum dilogarithm and the Baxter equation”, J. Statist. Phys., 102 (2001), 923–936 | DOI | MR | Zbl
[43] Ponsot B., Teschner J., “Clebsch–Gordan and Racah–Wigner coefficients for continuous series of representations of $\mathcal U_q(\mathfrak{sl}(2,\mathbb R))$”, Comm. Math. Phys., 224 (2001), 613–655 ; arXiv: math.QA/0007097 | DOI | MR