@article{SIGMA_2011_7_a1,
author = {Sergei Sakovich},
title = {Singularity {Analysis} and {Integrability} of {a~Burgers-Type} {System} of {Foursov}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a1/}
}
Sergei Sakovich. Singularity Analysis and Integrability of a Burgers-Type System of Foursov. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a1/
[1] Foursov M. V., “On integrable coupled Burgers-type equations”, Phys. Lett. A, 272 (2000), 57–64 | DOI | MR | Zbl
[2] Svinolupov S. I., “On the analogues of the Burgers equation”, Phys. Lett. A, 135 (1989), 32–36 | DOI | MR
[3] Olver P. J., Sokolov V. V., “Integrable evolution equations on associative algebras”, Comm. Math. Phys., 193 (1998), 245–268 | DOI | MR | Zbl
[4] Sergyeyev A., “Infinitely many local higher symmetries without recursion operator or master symmetry: integrability of the Foursov–Burgers system revisited”, Acta Appl. Math., 109 (2010), 273–281, arXiv: 0804.2020 | DOI | MR | Zbl
[5] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl
[6] Tabor M., Chaos and integrability in nonlinear dynamics. An introduction, John Wiley Sons, Inc., New York, 1989 | MR | Zbl
[7] Ramani A., Grammaticos B., Bountis T., “The Painlevé property and singularity analysis of integrable and non-integrable systems”, Phys. Rep., 180 (1989), 159–245 | DOI | MR
[8] Calogero F., “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is Integrability?, Springer Ser. Nonlinear Dynam., ed. V. E. Zakharov, Springer, Berlin, 1991, 1–62 | MR | Zbl
[9] Tsuchida T., Wolf T., “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I”, J. Phys. A: Math. Gen., 38 (2005), 7691–7733, arXiv: nlin.SI/0412003 | DOI | MR | Zbl
[10] Sakovich S. Yu., “A system of four ODEs: the singularity analysis”, J. Nonlinear Math. Phys., 8 (2001), 217–219, arXiv: nlin.SI/0003039 | DOI | MR | Zbl
[11] Weiss J., “The Painlevé property for partial differential equations. II. Bäcklund transformations, Lax pairs, and the Schwarzian derivative”, J. Math. Phys., 24 (1983), 1405–1413 | DOI | MR | Zbl
[12] Steeb W.-H., Kloke M., Spieker B. M., “Liouville equation, Painlevé property and Bäcklund transformation”, Z. Naturforsch. A, 38 (1983), 1054–1055 | MR | Zbl
[13] Musette M., Conte R., “Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations”, J. Math. Phys., 32 (1991), 1450–1457 | DOI | MR | Zbl
[14] Karasu-Kalkanlı A., Sakovich S. Yu., “Bäcklund transformation and special solutions for the Drinfeld–Sokolov–Satsuma–Hirota system of coupled equations”, J. Phys. A: Math. Gen., 34 (2001), 7355–7358, arXiv: nlin.SI/0102001 | DOI | MR
[15] Karasu-Kalkanlı A., Karasu A., Sakovich A., Sakovich S., Turhan R., “A new integrable generalization of the Korteweg–de Vries equation”, J. Math. Phys., 49 (2008), 073516, 10 pp., arXiv: 0708.3247 | DOI | MR | Zbl
[16] Conte R., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008 | MR | Zbl
[17] Hone A. N. W., “Painlevé tests, singularity structure and integrability”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 245–277, arXiv: nlin.SI/0502017 | DOI | Zbl
[18] Estévez P. G., Prada J., “Lump solutions for PDE's: algorithmic construction and classification”, J. Nonlinear Math. Phys., 15:3 (2008), 166–175 | DOI | MR