Bäcklund Transformations for the Kirchhoff Top
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct Bäcklund transformations (BTs) for the Kirchhoff top by taking advantage of the common algebraic Poisson structure between this system and the $sl(2)$ trigonometric Gaudin model. Our BTs are integrable maps providing an exact time-discretization of the system, inasmuch as they preserve both its Poisson structure and its invariants. Moreover, in some special cases we are able to show that these maps can be explicitly integrated in terms of the initial conditions and of the “iteration time” $n$. Encouraged by these partial results we make the conjecture that the maps are interpolated by a specific one-parameter family of hamiltonian flows, and present the corresponding solution. We enclose a few pictures where the orbits of the continuous and of the discrete flow are depicted.
Keywords: Kirchhoff equations; Bäcklund transformations; integrable maps; Lax representation.
@article{SIGMA_2011_7_a0,
     author = {Orlando Ragnisco and Federico Zullo},
     title = {B\"acklund {Transformations} for the {Kirchhoff} {Top}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a0/}
}
TY  - JOUR
AU  - Orlando Ragnisco
AU  - Federico Zullo
TI  - Bäcklund Transformations for the Kirchhoff Top
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a0/
LA  - en
ID  - SIGMA_2011_7_a0
ER  - 
%0 Journal Article
%A Orlando Ragnisco
%A Federico Zullo
%T Bäcklund Transformations for the Kirchhoff Top
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a0/
%G en
%F SIGMA_2011_7_a0
Orlando Ragnisco; Federico Zullo. Bäcklund Transformations for the Kirchhoff Top. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a0/

[1] Kirchhoff G., “Vorlesungen über mathematische Physik”, Neunzenthe Vorlesung, Teubner, Leipzig, 1876, 233–250

[2] Milne-Thomson L. M., Theoretical hydrodynamics, Dover Publications, 1996

[3] Lamb H., Hydrodynamics, Cambridge University Press, Cambridge, 1993 | MR

[4] Gaudin M., “Diagonalisation d'une classe d'hamiltoniens de spin”, J. Physique, 37 (1976), 1087–1098 ; Gaudin M., La function d'onde de Bethe, Masson, Parigi, 1983 | DOI | MR | MR | Zbl

[5] Musso F., Petrera M., Ragnisco O., “Algebraic extension of Gaudin models”, J. Nonlinear Math. Phys., 12:1 (2005), 482–498, arXiv: nlin.SI/0410016 | DOI | MR

[6] Petrera M., Ragnisco O., “From $\mathfrak{su}(2)$ Gaudin models to integrable tops”, SIGMA, 3 (2007), 058, 14 pp., arXiv: math-ph/0703044 | DOI | MR | Zbl

[7] Faddeev L. D., Takhtajan L. A., Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987 | MR | Zbl

[8] Kuznetsov V. B., Sklyanin E. K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251, arXiv: solv-int/9711010 | DOI | MR | Zbl

[9] Ragnisco O., Zullo F., “Bäcklund transformation as exact integrable time-discretizations for the trigonometric Gaudin model”, J. Phys. A: Math. Theor., 43 (2010), 434029, 14 pp., arXiv: 1003.0389 | DOI | MR | Zbl

[10] Kuznetsov V. B., Vanhaecke P., “Bäcklund transformations for finite-dimensional integrable systems: a geometric approach”, J. Geom. Phys., 44 (2002), 1–40, arXiv: nlin.SI/0004003 | DOI | MR | Zbl

[11] Hamermesh M., Group theory and its application to physical problems, Dover Publications, 1989

[12] Halphen G. E., Traité des fonctions elliptiques et de leurs applications, v. 2, Gauthier-Villars, Paris, 1886 | Zbl

[13] Armitage J. V., Eberlein W. F., Elliptic functions, London Mathematical Society Student Texts, 67, Cambridge University Press, Cambridge, 2006 | MR | Zbl