Sklyanin Determinant for Reflection Algebra
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Reflection algebras is a class of algebras associated with integrable models with boundaries. The coefficients of Sklyanin determinant generate the center of the reflection algebra. We give a combinatorial description of Sklyanin determinant suitable for explicit computations.
Keywords: reflection equation; Sklyanin determinant.
@article{SIGMA_2010_6_a99,
     author = {Natasha Rozhkovskaya},
     title = {Sklyanin {Determinant} for {Reflection} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a99/}
}
TY  - JOUR
AU  - Natasha Rozhkovskaya
TI  - Sklyanin Determinant for Reflection Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a99/
LA  - en
ID  - SIGMA_2010_6_a99
ER  - 
%0 Journal Article
%A Natasha Rozhkovskaya
%T Sklyanin Determinant for Reflection Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a99/
%G en
%F SIGMA_2010_6_a99
Natasha Rozhkovskaya. Sklyanin Determinant for Reflection Algebra. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a99/

[1] Molev A., Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143, American Mathematical Society, Providence, RI, 2007 | MR | Zbl

[2] Molev A., “Yangians and their applications”, Handbook of Algebra, v. 3, North-Holland, Amsterdam, 2003, 907–959, arXiv: math.QA/0211288 | MR

[3] Molev A., “Sklyanin determinant, Laplace operators, and charcteristic identities for classical Lie algebras”, J. Math. Phys., 36 (1995), 923–943, arXiv: hep-th/9409036 | DOI | MR | Zbl

[4] Molev A., Nazarov M., Ol'shanskii G., “Yangians and classical Lie algebras”, Russian Math. Surveys, 51:2 (1996), 205–282, arXiv: hep-th/9409025 | DOI | MR | Zbl

[5] Molev A., Ragoucy E., “Representations of reflection algebras”, Rev. Math. Phys., 14 (2002), 317–342, arXiv: math.QA/0107213 | DOI | MR | Zbl

[6] Ol'shanskii G. I., “Twisted Yangians and infinite-dimensional classical Lie algebras”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, ed. P. Kulish, Springer, Berlin, 1992, 104–119 | DOI | MR

[7] Sklyanin E. K., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl