@article{SIGMA_2010_6_a97,
author = {Victor P. Berezovoj and Glib I. Ivashkevych and Mikhail I. Konchatnij},
title = {Multi-Well {Potentials} in {Quantum} {Mechanics} and {Stochastic} {Processes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a97/}
}
TY - JOUR AU - Victor P. Berezovoj AU - Glib I. Ivashkevych AU - Mikhail I. Konchatnij TI - Multi-Well Potentials in Quantum Mechanics and Stochastic Processes JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a97/ LA - en ID - SIGMA_2010_6_a97 ER -
%0 Journal Article %A Victor P. Berezovoj %A Glib I. Ivashkevych %A Mikhail I. Konchatnij %T Multi-Well Potentials in Quantum Mechanics and Stochastic Processes %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a97/ %G en %F SIGMA_2010_6_a97
Victor P. Berezovoj; Glib I. Ivashkevych; Mikhail I. Konchatnij. Multi-Well Potentials in Quantum Mechanics and Stochastic Processes. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a97/
[1] Kramers H. A., “Brownian motion in field of force and the diffusion model of chemical reactions”, Physica, 7 (1940), 284–304 | DOI | MR | Zbl
[2] Hanggi P., Talkner P., Berkovec M., “Reaction-rate theory: fifty years after Kramers”, Rev. Modern Phys., 62 (1990), 251–341 | DOI | MR
[3] Gammaitoni L., Hanggi P., Jung P., Marchesoni F., “Stochastic resonance”, Rev. Modern Phys., 70 (1998), 22–287 | DOI
[4] Anishchenko V. S., Neiman A. B., Moss F., Shimansky-Geier L., “Stochastic resonance: noise enhanced order”, Phys. Usp., 42 (1999), 7–36 | DOI
[5] Pitaevskii L. P., “Bose–Einstein condensation in magnetic traps. Introduction in a theory”, Phys. Usp., 41 (1998), 569–580 | DOI
[6] Pitaevskii L. P., “Bose–Einstein condensates in a laser field”, Phys. Usp., 49 (2006), 333–351 | DOI
[7] Tye S. H. H., A new view of the cosmic landscape, arXiv: hep-th/0611148
[8] Chang L. L., Esaki L., Tsu R., “Resonant tunneling in semiconductor double barriers”, Appl. Phys. Lett., 24 (1974), 593–598 | DOI
[9] Risken H., The Fokker–Planck equation. Methods of solution and applications, Springer Series in Synergetics, 18, eds. 2nd ed., Springer-Verlag, Berlin, 1989 | MR | Zbl
[10] van Kampen N. G., Stochastic processes in physics and chemistry, North-Holland Publishing Company, Amsterdam, 1992
[11] Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001 | MR
[12] Junker G., Supersymmetric methods in quantum and statistical physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996 | MR
[13] Hongler M.-O., Zheng W. M., “Exact results for the diffusion in bistable potentials”, J. Statist. Phys., 29 (1982), 317–327 | DOI | MR | Zbl
[14] Hongler M.-O., Zheng W. M., “Exact results for the diffusion in a class of asymmetric bistable potentials”, J. Math. Phys., 24 (1983), 336–340 | DOI | MR
[15] Jauslin H. R., “Exact propagator and eigenfunctions for multistable models with arbitrarily prescribed $N$ lowest eigenvalues”, J. Phys. A: Math. Gen., 21 (1988), 2337–2350 | DOI | MR | Zbl
[16] Zheng W. M., “The Darboux transformation and solvable double-well potential models for Schrödinger equations”, J. Math. Phys., 25 (1984), 88–90 | DOI | MR | Zbl
[17] Turbiner A. V., “Double well potential: perturbation theory, tunneling, WKB (beyond instantons)”, Internat. J. Modern Phys. A, 25 (2010), 647–658, arXiv: 0907.4485 | DOI | Zbl
[18] Jentschura U. D., Zinn-Justin J., “Instantons in quantum mechanics and resurgent expansions”, Phys. Lett. B, 596 (2004), 138–144, arXiv: hep-ph/0405279 | DOI | MR
[19] Surzhykov A., Lubasch M., Zinn-Justin J., Jentschura U. D., “Quantum dot potentials: Symanzik scaling, resurgent expansions, and quantum dynamics”, Phys. Rev. B, 74 (2006), 205317, 13 pp., arXiv: cond-mat/0609027 | DOI
[20] Pashnev A. I., “One-dimensional supersymmetrical quantum mechanics with $N\ge2$”, Teoret. and Math. Phys., 69 (1986), 1172–1175 | DOI | MR
[21] Berezovoj V. P., Pashnev A. I., “$N=2$ supersymmetric quantum mechanics and the inverse scattering problem”, Teoret. and Math. Phys., 74 (1988), 264–268 | DOI | Zbl
[22] Berezovoj V. P., Pashnev A. I., “Extended $N=2$ supersymmetric quantum mechanics and isospectral Hamiltonians”, Z. Phys. C, 51 (1991), 525–529 | DOI | MR
[23] Berezovoj V. P., Ivashkevych G. I., Konchatnij M. I., “Exactly solvable diffusion models in the framework of the extended supersymmetric quantum mechanics”, Phys. Lett. A, 374 (2010), 1197–1200, arXiv: 1006.5917 | DOI | MR
[24] Gendenshtein L. E., “Derivation of exact spectra of Schrödinger equation by means of supersymmetry”, JETP Lett., 38 (1983), 356–359
[25] Andrianov A. A., Ioffe M. V., Spiridonov V. P., “Higher-derivative supersymmetry and the Witten index”, Phys. Lett. A, 174 (1993), 273–279, arXiv: hep-th/9303005 | DOI | MR
[26] Andrianov A. A., Ioffe M. V., Nishniadze D. N., “Polynomial SUSY in quantum mechanics and second derivative Darboux transformation”, Phys. Lett. A, 201 (1995), 103–110, arXiv: hep-th/9404120 | DOI | MR | Zbl
[27] Samsonov B. F., “New features in supersymmetry breakdown in quantum mechanics”, Modern Phys. Lett. A, 11 (1996), 1563–1567, arXiv: quant-ph/9611012 | DOI | MR | Zbl
[28] Plyuschay M., “Hidden nonlinear supersymmetries in pure parabolic systems”, Internat. J. Modern Phys. A, 15 (2000), 3679–3698, arXiv: hep-th/9903130 | DOI | MR
[29] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 | DOI
[30] Witten E., “Constraints on supersymmetry breaking”, Nuclear Phys. B, 202 (1982), 253–316 | DOI | MR
[31] Faux M., Spector D., “A BPS interpretation of shape invariance”, J. Phys. A: Math. Gen., 37 (2004), 10397–10407, arXiv: quant-ph/0401163 | DOI | MR | Zbl
[32] Ivanov E. A., Krivonos S. O., Pashnev A. I., “Partial supersymmetry breaking in $N=4$ supersymmetric quantum mechanics”, Classical Quantum Gravity, 8 (1991), 19–39 | DOI | MR
[33] Jeffreys H., Swirles B., Methods of mathematical physics, 3rd ed., Cambridge University Press, Cambridge, 1956 | MR
[34] Luban M., Persey D. L., “New Schrödinger equations for old: inequivalence of the Darboux and Abraham–Moses constructions”, Phys. Rev. D, 33 (1986), 431–436 | DOI | MR
[35] Persey D. L., “New families of isospectral Hamiltonians”, Phys. Rev. D, 33 (1986), 1048–1055 | DOI | MR
[36] Mielnik B., “Factorization method and new potentials with the oscillator spectrum”, J. Math. Phys., 25 (1984), 3387–3389 | DOI | MR | Zbl
[37] Agudov N. V., “Noise delayed decay of unstable states”, Phys. Rev. E, 57 (1998), 2618–2625 | DOI
[38] Agudov N. V., Malakhov A. N., “Decay of unstable equilibrium and nonequilibrium states with inverse probability current taken into account”, Phys. Rev. E, 60 (1999), 6333–6343 | DOI | MR
[39] Berezhkovskii A. M., Talkner P., Emmerich J., Zitserman V. Yu., “Thermally activated traversal of an energy barrier of arbitrary shape”, J. Chem. Phys., 105 (1996), 10890–10895 | DOI
[40] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental function, v. 2, McGraw-Hill Book Company, Inc., New York, Toronto, London, 1953
[41] Abraham P. B., Moses H. E., “Changes in potentials due to changes in the point spectrum: anharmonic oscillators with exact solutions”, Phys. Rev. A, 22 (1980), 1333–1340 | DOI | MR
[42] Chaudhury S., Cherayil B. J., “Approximate first passage time distribution for barrier crossing in a double well under fractional Gaussian noise”, J. Chem. Phys., 125 (2006), 114106, 8 pp. | DOI
[43] Mondescu R. P., Muthukumar M., “Statistics of an ideal polymer in a multistable potential: exact solutions and instanton approximation”, J. Chem. Phys., 110 (1999), 12240–12249 | DOI