@article{SIGMA_2010_6_a96,
author = {Orlando Ragnisco and Danilo Riglioni},
title = {A~Family of {Exactly} {Solvable} {Radial} {Quantum} {Systems} on {Space} of {Non-Constant} {Curvature} with {Accidental} {Degeneracy} in the {Spectrum}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a96/}
}
TY - JOUR AU - Orlando Ragnisco AU - Danilo Riglioni TI - A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a96/ LA - en ID - SIGMA_2010_6_a96 ER -
%0 Journal Article %A Orlando Ragnisco %A Danilo Riglioni %T A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a96/ %G en %F SIGMA_2010_6_a96
Orlando Ragnisco; Danilo Riglioni. A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a96/
[1] Arnold V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, 2nd ed., Springer-Verlag, New York, 1989 | MR
[2] Gritsev V. V., Kurochkin Yu. A., “Model of excitations in quantum dots based on quantum mechanics in space of constant curvature”, Phys. Rev. B, 64 (2001), 035308, 9 pp. | DOI
[3] Quesne C., Tkachuk V. M., “Deformed algebras,position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37 (2004), 4267–4281, arXiv: math-ph/0403047 | DOI | MR | Zbl
[4] Bagchi B., Quesne C., Roychoudury R., “Pseudo-Hermitian versus Hermitian position-dependent-mass Hamiltonians in a perturbative framework”, J. Phys. A: Math. Gen., 39 (2006), L127–L134, arXiv: quant-ph/0511182 | DOI | MR | Zbl
[5] Cruz y Cruz S., Negro J., Nieto L. M., “Classical and quantum position-dependent mass harmonic oscillators”, Phys. Lett. A, 369 (2007), 400–406 | DOI | MR
[6] Mazharimousavi S., Mustafa O., “Flatland position-dependent mass: polar coordinates, separability and exact solvability”, SIGMA, 6 (2010), 088, 8 pp., arXiv: 1003.3003 | DOI
[7] Tanaka T., “$N$-fold supersimmetry in quantum systems with position-dependent mass”, J. Phys. A: Math. Gen., 39 (2006), 219–234, arXiv: quant-ph/0509132 | DOI | MR | Zbl
[8] Bertrand J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C. R. Math. Acad. Sci. Paris, 77 (1873), 849–853
[9] Perlick V., “Bertrand spacetimes”, Classical Quantum Gravity, 9 (1992), 1009–1021 | DOI | MR | Zbl
[10] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé trascendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp., arXiv: 0811.1568 | DOI | MR | Zbl
[11] Ballesteros A., Enciso A., Herranz F. J., Ragnisco O., “Bertrand spacetimes as Kepler/oscillator potentials”, Classical Quantum Gravity, 25 (2008), 165005, 13 pp., arXiv: 0803.3430 | DOI | MR | Zbl
[12] Iwai T., Katayama N., “Multifold Kepler systems – dynamical systems all of whose bounded trajectories are closed”, J. Math. Phys., 36 (1995), 1790–1811 | DOI | MR | Zbl
[13] Ballesteros A., Enciso A., Herranz F. J., Ragnisco O., “Hamiltonian systems admitting a Runge–Lenz vector and an optimal extension of Bertrand's theorem to curved manifolds”, Comm. Math. Phys., 290 (2009), 1033–1049, arXiv: 0810.0999 | DOI | MR | Zbl
[14] von Roos O., “Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 27 (1983), 7547–7752 | DOI
[15] Schrödinger E., “A method of determining quantum mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 9–16 ; Schrödinger E., “Further studies on solving eigenvalue problems by factorization”, Proc. Roy. Irish Acad. Sect. A, 46 (1941), 183–206 | MR | MR | Zbl
[16] Infield L., Schild A., “A note on the Kepler problem in a space of constant negative curvature”, Phys. Rev., 67 (1945), 121–122 | DOI | MR
[17] Higgs P. W., “Dynamical symmetries in a spherical geometry. I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl
[18] Leemon H. I., “Dynamical symmetries in a spherical geometry. II”, J. Phys. A: Math. Gen., 12 (1979), 489–501 | DOI | MR | Zbl
[19] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Coulomb-oscillator duality in spaces of constant curvature”, J. Math. Phys., 41 (2000), 2629–2657, arXiv: quant-ph/9906055 | DOI | MR | Zbl
[20] Cariñena J. F., Rañada M. F., Santander M., “Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere $S^2$ and hyperbolic plane $H^2$”, J. Math. Phys., 46 (2005), 052702, 25 pp., arXiv: math-ph/0504016 | DOI | MR | Zbl
[21] Bagrov V. G., Samsonov B. F., “Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics”, Theoret. and Math. Phys., 104 (1995), 1051–1060 | DOI | MR | Zbl
[22] Iwai T., Uwano Y., Katayama N., “Quantization of the multifold Kepler system”, J. Math. Phys., 37 (1996), 608–624 | DOI | MR | Zbl