A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetry. The high number of symmetries (both geometrical and dynamical) exhibited by the classical systems has a counterpart in the accidental degeneracy in the spectrum of the quantum systems. This family of quantum problem is completely solved with the techniques of the SUSYQM (supersymmetric quantum mechanics). We also analyze in detail the ordering problem arising in the quantization of the kinetic term of the classical Hamiltonian, stressing the link existing between two physically meaningful quantizations: the geometrical quantization and the position dependent mass quantization.
Keywords: superintegrable quantum systems; curved spaces; PDM and LB quantisation.
@article{SIGMA_2010_6_a96,
     author = {Orlando Ragnisco and Danilo Riglioni},
     title = {A~Family of {Exactly} {Solvable} {Radial} {Quantum} {Systems} on {Space} of {Non-Constant} {Curvature} with {Accidental} {Degeneracy} in the {Spectrum}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a96/}
}
TY  - JOUR
AU  - Orlando Ragnisco
AU  - Danilo Riglioni
TI  - A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a96/
LA  - en
ID  - SIGMA_2010_6_a96
ER  - 
%0 Journal Article
%A Orlando Ragnisco
%A Danilo Riglioni
%T A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a96/
%G en
%F SIGMA_2010_6_a96
Orlando Ragnisco; Danilo Riglioni. A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a96/

[1] Arnold V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, 2nd ed., Springer-Verlag, New York, 1989 | MR

[2] Gritsev V. V., Kurochkin Yu. A., “Model of excitations in quantum dots based on quantum mechanics in space of constant curvature”, Phys. Rev. B, 64 (2001), 035308, 9 pp. | DOI

[3] Quesne C., Tkachuk V. M., “Deformed algebras,position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37 (2004), 4267–4281, arXiv: math-ph/0403047 | DOI | MR | Zbl

[4] Bagchi B., Quesne C., Roychoudury R., “Pseudo-Hermitian versus Hermitian position-dependent-mass Hamiltonians in a perturbative framework”, J. Phys. A: Math. Gen., 39 (2006), L127–L134, arXiv: quant-ph/0511182 | DOI | MR | Zbl

[5] Cruz y Cruz S., Negro J., Nieto L. M., “Classical and quantum position-dependent mass harmonic oscillators”, Phys. Lett. A, 369 (2007), 400–406 | DOI | MR

[6] Mazharimousavi S., Mustafa O., “Flatland position-dependent mass: polar coordinates, separability and exact solvability”, SIGMA, 6 (2010), 088, 8 pp., arXiv: 1003.3003 | DOI

[7] Tanaka T., “$N$-fold supersimmetry in quantum systems with position-dependent mass”, J. Phys. A: Math. Gen., 39 (2006), 219–234, arXiv: quant-ph/0509132 | DOI | MR | Zbl

[8] Bertrand J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C. R. Math. Acad. Sci. Paris, 77 (1873), 849–853

[9] Perlick V., “Bertrand spacetimes”, Classical Quantum Gravity, 9 (1992), 1009–1021 | DOI | MR | Zbl

[10] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé trascendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp., arXiv: 0811.1568 | DOI | MR | Zbl

[11] Ballesteros A., Enciso A., Herranz F. J., Ragnisco O., “Bertrand spacetimes as Kepler/oscillator potentials”, Classical Quantum Gravity, 25 (2008), 165005, 13 pp., arXiv: 0803.3430 | DOI | MR | Zbl

[12] Iwai T., Katayama N., “Multifold Kepler systems – dynamical systems all of whose bounded trajectories are closed”, J. Math. Phys., 36 (1995), 1790–1811 | DOI | MR | Zbl

[13] Ballesteros A., Enciso A., Herranz F. J., Ragnisco O., “Hamiltonian systems admitting a Runge–Lenz vector and an optimal extension of Bertrand's theorem to curved manifolds”, Comm. Math. Phys., 290 (2009), 1033–1049, arXiv: 0810.0999 | DOI | MR | Zbl

[14] von Roos O., “Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 27 (1983), 7547–7752 | DOI

[15] Schrödinger E., “A method of determining quantum mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 9–16 ; Schrödinger E., “Further studies on solving eigenvalue problems by factorization”, Proc. Roy. Irish Acad. Sect. A, 46 (1941), 183–206 | MR | MR | Zbl

[16] Infield L., Schild A., “A note on the Kepler problem in a space of constant negative curvature”, Phys. Rev., 67 (1945), 121–122 | DOI | MR

[17] Higgs P. W., “Dynamical symmetries in a spherical geometry. I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl

[18] Leemon H. I., “Dynamical symmetries in a spherical geometry. II”, J. Phys. A: Math. Gen., 12 (1979), 489–501 | DOI | MR | Zbl

[19] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Coulomb-oscillator duality in spaces of constant curvature”, J. Math. Phys., 41 (2000), 2629–2657, arXiv: quant-ph/9906055 | DOI | MR | Zbl

[20] Cariñena J. F., Rañada M. F., Santander M., “Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere $S^2$ and hyperbolic plane $H^2$”, J. Math. Phys., 46 (2005), 052702, 25 pp., arXiv: math-ph/0504016 | DOI | MR | Zbl

[21] Bagrov V. G., Samsonov B. F., “Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics”, Theoret. and Math. Phys., 104 (1995), 1051–1060 | DOI | MR | Zbl

[22] Iwai T., Uwano Y., Katayama N., “Quantization of the multifold Kepler system”, J. Math. Phys., 37 (1996), 608–624 | DOI | MR | Zbl