@article{SIGMA_2010_6_a95,
author = {Omar Cherbal and Mahrez Drir and Mustapha Maamache and Dimitar A. Trifonov},
title = {Supersymmetric {Extension} of {Non-Hermitian} su(2) {Hamiltonian} and {Supercoherent} {States}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a95/}
}
TY - JOUR AU - Omar Cherbal AU - Mahrez Drir AU - Mustapha Maamache AU - Dimitar A. Trifonov TI - Supersymmetric Extension of Non-Hermitian su(2) Hamiltonian and Supercoherent States JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a95/ LA - en ID - SIGMA_2010_6_a95 ER -
%0 Journal Article %A Omar Cherbal %A Mahrez Drir %A Mustapha Maamache %A Dimitar A. Trifonov %T Supersymmetric Extension of Non-Hermitian su(2) Hamiltonian and Supercoherent States %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a95/ %G en %F SIGMA_2010_6_a95
Omar Cherbal; Mahrez Drir; Mustapha Maamache; Dimitar A. Trifonov. Supersymmetric Extension of Non-Hermitian su(2) Hamiltonian and Supercoherent States. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a95/
[1] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $PT$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246, arXiv: math-ph/9712001 | DOI | MR | Zbl
[2] Mostafazadeh A., “Pseudo-Hermiticity versus $PT$ symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43 (2002), 205–214, arXiv: math-ph/0107001 | DOI | MR | Zbl
[3] Swanson M. S., “Transition elements for a non-Hermitian quadratic Hamiltonian”, J. Math. Phys., 45 (2004), 585–601 | DOI | MR | Zbl
[4] Geyer H. B., Scholtz F. G., Snyman I., “Quasi-Hermiticity and the role of a metric in some boson Hamiltonians”, Czechoslovak J. Phys., 54 (2004), 1069–1073 | DOI | MR
[5] Jones H. F., “On pseudo-Hermitian Hamiltonians and their Hermitian counterparts”, J. Phys. A: Math. Gen., 38 (2005), 1741–1746, arXiv: quant-ph/0411171 | DOI | MR | Zbl
[6] Bagchi B., Quesne C., Roychoudhury R., “Pseudo-Hermiticity and some consequences of a generalized quantum condition”, J. Phys. A: Math. Gen., 38 (2005), L647–L652, arXiv: quant-ph/0508073 | DOI | MR | Zbl
[7] Musumbu D. P., Geyer H. B., Heiss W. D., “Choice of a metric for the non-Hermitian oscillator”, J. Phys. A: Math. Theor., 40 (2007), F75–F80, arXiv: quant-ph/0611150 | DOI | MR | Zbl
[8] Quesne C., “A non-Hermitian oscillator Hamiltonian and $\mathrm{su}(1,1)$: a way towards generalizations,”, J. Phys. A: Math. Theor., 40 (2007), F745–F751, arXiv: 0705.2868 | DOI | MR | Zbl
[9] Quesne C., “Quasi-Hermitian supersymmetric extensions of a non-Hermitian oscillator Hamiltonian and of its generalizations”, J. Phys. A: Math. Theor., 41 (2008), 244022, 10 pp., arXiv: 0710.2453 | DOI | MR | Zbl
[10] Bagchi B., Quesne C., “Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework”, Phys. Lett. A, 300 (2002), 18–26, arXiv: math-ph/0205002 | DOI | MR | Zbl
[11] Assis P. E. G., Fring A., “Non-Hermitian Hamiltonians of Lie algebraic type”, J. Phys. A: Math. Theor., 42 (2009), 015203, 23 pp., arXiv: 0804.4677 | DOI | MR | Zbl
[12] Allen L., Eberly J. H., Optical resonance and two-level atoms, Dover Publications, Inc., New York, 1987
[13] Wódkiewicz K., Eberly J. H., “Coherent states, squeezed fluctuations, and the SU(2) and SU(1,1) groups in quantum-optics applications”, J. Opt. Soc. Am. B, 2 (1985), 458–466 | DOI
[14] Arecchi F. T., Courtens E., Gilmore R., Thomas H., “Atomic coherent states in quantum optics”, Phys. Rev. A, 6 (1972), 2211–2237 | DOI
[15] Zhang W. M., Feng D. H., Gilmore R., “Coherent states: theory and some applications”, Rev. Modern Phys., 62 (1990), 867–927 | DOI | MR
[16] Mostafazadeh A., “Statistical origin of pseudo-Hermitian supersymmetry and pseudo-Hermitian fermions”, J. Phys. A: Math. Gen., 37 (2004), 10193–10207, arXiv: quant-ph/0404025 | DOI | MR | Zbl
[17] Cherbal O., Drir M., Maamache M., Trifonov D. A., “Invariants and coherent states for a nonstationary fermionic forced oscillator”, Phys. Lett. A, 374 (2010), 535–538, arXiv: 0912.4820 | DOI | MR
[18] Mostafazadeh A., “Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians”, Nuclear Phys. B, 640 (2002), 419–434, arXiv: math-ph/0203041 | DOI | MR | Zbl
[19] Mostafazadeh A., “Pseudo-Hermitian supersymmetry: a brief review”, Czechoslovak J. Phys., 54 (2004), 1371–1374 | DOI | MR
[20] Gendenshtein L. E., Krive I. V., “Supersymmetry in quantum mechanics”, Soviet Phys. Uspekhi, 28 (1985), 645–666 | DOI | MR
[21] Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001 | MR
[22] Aragone C., Zypman F., “Supercoherent states”, J. Phys. A: Math. Gen., 19 (1986), 2267–2279 | DOI | MR | Zbl
[23] Fatyga B. W., Kostelecký V. A., Nieto M. M., Truax D. R., “Supercoherent states”, Phys. Rev. D, 43 (1991), 1403–1412 | DOI | MR
[24] Berube-Lauziere Y., Hussin V., “Comments of the definitions of coherent states for the SUSY harmonic oscillator”, J. Phys. A: Math. Gen., 26 (1993), 6271–6275 | DOI | MR
[25] Cherbal O., Drir M., Maamache M., Trifonov D. A., “Fermionic coherent states for pseudo-Hermitian two-level systems”, J. Phys. A: Math. Gen., 40 (2007), 1835–1844, arXiv: quant-ph/0608177 | DOI | MR | Zbl
[26] Trifonov D.A.,, “Pseudo-boson coherent and Fock states”, Proceedings of the 9th International Workshop on “Complex Structures, Integrability and Vector Fields” (August 25–29, 2008, Sofia), eds. K. Sekigawa, V. Gerdjikov and S. Dimiev, World Scientific Publishing Co., 2009, 241–250, arXiv: 0902.3744 | MR | Zbl
[27] Bagarello F., “Pseudobosons, Riesz bases, and coherent states”, J. Math. Phys., 51 (2010), 023531, 10 pp., arXiv: 1001.1136 | DOI | MR
[28] Berezin F. A., The method of second quantization, Academic Press, New York, 1966 | MR | Zbl
[29] Berezin F. A., Marinov M. S., “Particle spin dynamics as the Grassmann variant of classical mechanics”, Ann. Physics, 104 (1977), 336–362 | DOI | Zbl
[30] Cahill K. E., Glauber R. J., “Density operators for fermions”, Phys. Rev. A, 59 (1999), 1538–1555, arXiv: physics/9808029 | DOI
[31] Junker G., Klauder J. R., “Coherent-state quantization of constrained fermion systems”, Eur. Phys. J. C, 4 (1998), 173–183, arXiv: quant-ph/9708027 | DOI
[32] Gilmore R., “Baker–Campbell–Hausdorff formulas”, J. Math. Phys., 15 (1974), 2090–2092 | DOI | MR | Zbl
[33] Glauber R. J., “Coherent and incoherent states of the radiation field”, Phys. Rev., 131 (1963), 2766–2788 | DOI | MR