Irrationality of the Roots of the Yablonskii–Vorob'ev Polynomials and Relations between Them
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Yablonskii–Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. Divisibility properties of the coefficients of these polynomials, concerning powers of $4$, are obtained and we prove that the nonzero roots of the Yablonskii–Vorob'ev polynomials are irrational. Furthermore, relations between the roots of these polynomials for consecutive degree are found by considering power series expansions of rational solutions of the second Painlevé equation.
Keywords: second Painlevé equation; rational solutions; power series expansion; irrational roots; Yablonskii–Vorob'ev polynomials.
@article{SIGMA_2010_6_a94,
     author = {Pieter Roffelsen},
     title = {Irrationality of the {Roots} of the {Yablonskii{\textendash}Vorob'ev} {Polynomials} and {Relations} between {Them}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a94/}
}
TY  - JOUR
AU  - Pieter Roffelsen
TI  - Irrationality of the Roots of the Yablonskii–Vorob'ev Polynomials and Relations between Them
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a94/
LA  - en
ID  - SIGMA_2010_6_a94
ER  - 
%0 Journal Article
%A Pieter Roffelsen
%T Irrationality of the Roots of the Yablonskii–Vorob'ev Polynomials and Relations between Them
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a94/
%G en
%F SIGMA_2010_6_a94
Pieter Roffelsen. Irrationality of the Roots of the Yablonskii–Vorob'ev Polynomials and Relations between Them. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a94/

[1] Yablonskii A. I., “On rational solutions of the second Painlevé equation”, Vesti AN BSSR, Ser. Fiz.-Tech. Nauk, 3 (1959), 30–35 (in Russian)

[2] Vorob'ev A. P., “On the rational solutions of the second Painlevé equations”, Differ. Uravn., 1 (1965), 79–81 (in Russian) | MR

[3] Gambier B., “Sur les équations différentielles du second ordre et du premier degre dont l'intégrale est á points critiques fixes”, Acta Math., 33 (1909), 1–55 | DOI | MR | Zbl

[4] Lukashevich N. A., “The second Painlevé equation”, Differ. Uravn., 7 (1971), 1124–1125 (in Russian) | Zbl

[5] Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, 223, American Mathematical Society, Providence, RI, 2004 | MR | Zbl

[6] Airault H., McKean H. P., Moser J., “Rational and elliptic solutions of the Korteweg–de Vries equation and related many-body problems”, Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl

[7] Clarkson P. A., “Rational solutions of the Boussinesq equation”, Anal. Appl. (Singap.), 6 (2008), 349–369 | DOI | MR | Zbl

[8] Clarkson P. A., Mansfield E. L., “The second Painlevé equation, its hierarchy and associated special polynomials”, Nonlinearity, 16 (2003), R1–R26 | DOI | MR | Zbl

[9] Taneda M., “Remarks on the Yablonskii–Vorob'ev polynomials”, Nagoya Math. J., 159 (2000), 87–111 | MR | Zbl

[10] Fukutani S., Okamoto K., Umemura H., “Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations”, Nagoya Math. J., 159 (2000), 179–200 | MR | Zbl

[11] Kaneko M., Ochiai H., “On coefficients of Yablonskii–Vorob'ev polynomials”, J. Math. Soc. Japan, 55 (2003), 985–993, arXiv: math.QA/0205178 | DOI | MR | Zbl

[12] Kametaka Y., “On the irreducibility conjecture based on computer calculation for Yablonskii–Vorob'ev polynomials which give a rational solution of the Toda equation of Painlevé-II type”, Japan J. Appl. Math., 2 (1985), 241–246 | DOI | MR | Zbl

[13] Kudryashov N. A., Demina M. V., “Relations between zeros of special polynomials associated with the Painlevé equations”, Phys. Lett. A, 368 (2007), 227–234, arXiv: nlin.SI/0610058 | DOI | MR