@article{SIGMA_2010_6_a94,
author = {Pieter Roffelsen},
title = {Irrationality of the {Roots} of the {Yablonskii{\textendash}Vorob'ev} {Polynomials} and {Relations} between {Them}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a94/}
}
TY - JOUR AU - Pieter Roffelsen TI - Irrationality of the Roots of the Yablonskii–Vorob'ev Polynomials and Relations between Them JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a94/ LA - en ID - SIGMA_2010_6_a94 ER -
Pieter Roffelsen. Irrationality of the Roots of the Yablonskii–Vorob'ev Polynomials and Relations between Them. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a94/
[1] Yablonskii A. I., “On rational solutions of the second Painlevé equation”, Vesti AN BSSR, Ser. Fiz.-Tech. Nauk, 3 (1959), 30–35 (in Russian)
[2] Vorob'ev A. P., “On the rational solutions of the second Painlevé equations”, Differ. Uravn., 1 (1965), 79–81 (in Russian) | MR
[3] Gambier B., “Sur les équations différentielles du second ordre et du premier degre dont l'intégrale est á points critiques fixes”, Acta Math., 33 (1909), 1–55 | DOI | MR | Zbl
[4] Lukashevich N. A., “The second Painlevé equation”, Differ. Uravn., 7 (1971), 1124–1125 (in Russian) | Zbl
[5] Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, 223, American Mathematical Society, Providence, RI, 2004 | MR | Zbl
[6] Airault H., McKean H. P., Moser J., “Rational and elliptic solutions of the Korteweg–de Vries equation and related many-body problems”, Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl
[7] Clarkson P. A., “Rational solutions of the Boussinesq equation”, Anal. Appl. (Singap.), 6 (2008), 349–369 | DOI | MR | Zbl
[8] Clarkson P. A., Mansfield E. L., “The second Painlevé equation, its hierarchy and associated special polynomials”, Nonlinearity, 16 (2003), R1–R26 | DOI | MR | Zbl
[9] Taneda M., “Remarks on the Yablonskii–Vorob'ev polynomials”, Nagoya Math. J., 159 (2000), 87–111 | MR | Zbl
[10] Fukutani S., Okamoto K., Umemura H., “Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations”, Nagoya Math. J., 159 (2000), 179–200 | MR | Zbl
[11] Kaneko M., Ochiai H., “On coefficients of Yablonskii–Vorob'ev polynomials”, J. Math. Soc. Japan, 55 (2003), 985–993, arXiv: math.QA/0205178 | DOI | MR | Zbl
[12] Kametaka Y., “On the irreducibility conjecture based on computer calculation for Yablonskii–Vorob'ev polynomials which give a rational solution of the Toda equation of Painlevé-II type”, Japan J. Appl. Math., 2 (1985), 241–246 | DOI | MR | Zbl
[13] Kudryashov N. A., Demina M. V., “Relations between zeros of special polynomials associated with the Painlevé equations”, Phys. Lett. A, 368 (2007), 227–234, arXiv: nlin.SI/0610058 | DOI | MR