On Non-Point Invertible Transformations of Difference and Differential-Difference Equations
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Non-point invertible transformations are completely described for difference equations on the quad-graph and for their differential-difference analogues. As an illustration, these transformations are used to construct new examples of integrable equations and autotransformations of the Hietarinta equation.
Keywords: non-point transformation; Darboux integrability; discrete Liouville equation; higher symmetry.
@article{SIGMA_2010_6_a91,
     author = {Sergey Ya. Startsev},
     title = {On {Non-Point} {Invertible} {Transformations} of {Difference} and {Differential-Difference} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a91/}
}
TY  - JOUR
AU  - Sergey Ya. Startsev
TI  - On Non-Point Invertible Transformations of Difference and Differential-Difference Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a91/
LA  - en
ID  - SIGMA_2010_6_a91
ER  - 
%0 Journal Article
%A Sergey Ya. Startsev
%T On Non-Point Invertible Transformations of Difference and Differential-Difference Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a91/
%G en
%F SIGMA_2010_6_a91
Sergey Ya. Startsev. On Non-Point Invertible Transformations of Difference and Differential-Difference Equations. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a91/

[1] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equation on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl

[2] Theoret. and Math. Phys., 121 (1999), 1484–1495, arXiv: solv-int/9902016 | DOI | MR | Zbl

[3] Calogero F., “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is integrability?, Springer Ser. Nonlinear Dynam., ed. V. E. Zakharov, Springer, Berlin, 1991, 1–62 | MR | Zbl

[4] Habibullin I. T., “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023, 9 pp., arXiv: nlin.SI/0506027 | DOI | MR | Zbl

[5] Habibullin I. T., Zheltukhina N., Pekcan A., “Complete list of Darboux integrable chains of the form $t_{1x}=t_x+d(t,t_1)$”, J. Math. Phys., 50 (2009), 102710, 23 pp., arXiv: 0907.3785 | DOI | MR | Zbl

[6] Hietarinta J., “A new two-dimensional lattice model that is ‘consistent around a cube’”, J. Phys. A: Math. Gen., 37 (2004), L67–L73, arXiv: nlin.SI/0311034 | DOI | MR | Zbl

[7] Hirota R., “Nonlinear partial difference equations. III. Discrete sine-Gordon equation”, J. Phys. Soc. Japan, 43 (1977), 2079–2086 | DOI | MR

[8] Hirota R., “Nonlinear partial difference equations. V. Nonlinear equations reducible to linear equations”, J. Phys. Soc. Japan, 46 (1979), 312–319 | DOI | MR

[9] Hirota R., “Discrete two-dimensional Toda molecule equation”, J. Phys. Soc. Japan, 56 (1987), 4285–4288 | DOI | MR

[10] Levi R., Yamilov R. I., “The generalized symmetry method for discrete equation”, J. Phys. A: Math. Theor., 42 (2009), 454012, 18 pp., arXiv: 0902.4421 | DOI | MR | Zbl

[11] Mikhailov A. V., Wang J. P., Xenitidis P. D., Recursion operators, conservation laws and integrability conditions for difference equations, arXiv: 1004.5346

[12] Nijhoff W. F., Quispel G. R. W., Capel H. W., “Linearization of nonlinear differential-difference equations”, Phys. Lett. A, 95 (1983), 273–276 | DOI | MR

[13] Nijhoff F. W., Capel H. W., “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl

[14] Orfanidis S. J., “Discrete sine-Gordon equations”, Phys. Rev. D, 18 (1978), 3822–3827 | DOI | MR

[15] Ramani A., Joshi N., Grammaticos B., Tamizhmani N., “Deconstructing an integrable lattice equation”, J. Phys. A: Math. Gen., 39 (2006), L145–L149 | DOI | MR | Zbl

[16] Sokolov V. V., Svinolupov S. I., “On nonclassical invertible transformation of hyperbolic equations”, European J. Appl. Math., 6 (1995), 145–156 | DOI | MR | Zbl

[17] Theoret. and Math. Phys., 85 (1991), 1269–1275 | DOI | MR | Zbl

[18] Yamilov R. I., “Construction scheme for discrete Miura transformation”, J. Phys. A: Math. Gen., 27 (1994), 6839–6851 | DOI | MR | Zbl

[19] Doklady Math., 52 (1996), 128–130 | MR | Zbl

[20] Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | MR | Zbl