@article{SIGMA_2010_6_a90,
author = {Bireswar Basu-Mallick and Nilanjan Bondyopadhaya and Kazuhiro Hikami},
title = {One-Dimensional {Vertex} {Models} {Associated} with {a~Class} of {Yangian} {Invariant} {Haldane{\textendash}Shastry} {Like} {Spin} {Chains}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a90/}
}
TY - JOUR AU - Bireswar Basu-Mallick AU - Nilanjan Bondyopadhaya AU - Kazuhiro Hikami TI - One-Dimensional Vertex Models Associated with a Class of Yangian Invariant Haldane–Shastry Like Spin Chains JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a90/ LA - en ID - SIGMA_2010_6_a90 ER -
%0 Journal Article %A Bireswar Basu-Mallick %A Nilanjan Bondyopadhaya %A Kazuhiro Hikami %T One-Dimensional Vertex Models Associated with a Class of Yangian Invariant Haldane–Shastry Like Spin Chains %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a90/ %G en %F SIGMA_2010_6_a90
Bireswar Basu-Mallick; Nilanjan Bondyopadhaya; Kazuhiro Hikami. One-Dimensional Vertex Models Associated with a Class of Yangian Invariant Haldane–Shastry Like Spin Chains. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a90/
[1] Sutherland B., Beautiful models. 70 years of exactly solved quantum many-body problems, World Scientific Publishing Co., Inc., River Edge, NJ, 2004 | MR | Zbl
[2] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[3] Essler F. H. L., Frahm H., Göhmann F., Klümper A., Korepin V. E., The one-dimensional Hubbard model, Cambridge University Press, Cambridge, 2005 | Zbl
[4] Sutherland B., “Two-dimensional hydrogen bonded crystals without the ice rule”, J. Math. Phys., 11 (1970), 3183–3186 | DOI
[5] Baxter R. J., “One-dimensional anisotropic Heisenberg chain”, Phys. Rev. Lett., 26 (1971), 834–834 | DOI | MR
[6] Haldane F. D. M., “Exact Jastrow–Gutzwiller resonating-valence-bond ground state of the spin-$1/2$ antiferromagnetic Heisenberg chain with $1/r^2$ exchange”, Phys. Rev. Lett., 60 (1988), 635–638 | DOI | MR
[7] Shastry B. S., “Exact solution of an $S=1/2$ Heisenberg antiferromagnetic chain with long-ranged interactions”, Phys. Rev. Lett., 60 (1988), 639–642 | DOI
[8] Polychronakos A. P., “Lattice integrable systems of Haldane–Shastry type”, Phys. Rev. Lett., 70 (1993), 2329–2331, arXiv: hep-th/9210109 | DOI | MR
[9] Frahm H., “Spectrum of a spin chain with inverse square exchange”, J. Phys. A: Math. Gen., 26 (1993), L473–L479, arXiv: cond-mat/9303050 | DOI | MR | Zbl
[10] Polychronakos A. P., “Exact spectrum of $SU(n)$ spin chain with inverse-square exchange”, Nuclear Phys. B, 419 (1994), 553–566 | DOI | MR | Zbl
[11] Haldane F. D. M., ““Fractional statistics” in arbitrary dimensions: a generalization of the Pauli principle”, Phys. Rev. Lett., 67 (1991), 937–940 | DOI | MR | Zbl
[12] Ha Z. N. C., Quantum many-body systems in one dimension, Series on Advances in Statistical Mechanics, 12, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | MR
[13] Bernevig B. A., Gurarie V., Simon S. H., “Central charge and quasihole scaling dimensions from model wavefunctions: towards relating Jack wavefunctions to $W$-algebras”, J. Phys. A: Math. Theor., 42 (2009), 245206, 30 pp., arXiv: 0903.0635 | DOI | MR | Zbl
[14] Bernevig B. A., Haldane F. D. M., “Clustering properties and model wavefunctions for non-Abelian fractional quantum Hall quasielectrons”, Phys. Rev. Lett., 102 (2009), 066802, 4 pp., arXiv: 0810.2366 | DOI
[15] Beisert N., Dippel V., Staudacher M., “A novel long-range spin chain and planar $\mathcal N=4$ super Yang–Mills”, J. High Energy Phys., 2004:7 (2004), 075, 49 pp., arXiv: hep-th/0405001 | DOI | MR
[16] Serban D., Staudacher M., “Planar $\mathcal N=4$ gauge theory and the Inozemtsev long range spin chain”, J. High Energy Phys., 2004:6 (2004), 001, 31 pp., arXiv: hep-th/0401057 | DOI | MR
[17] Beisert N., Staudacher M., “Long-range $\mathfrak{psu}(2,2|4)$ Bethe ansätze for gauge theory and strings”, Nuclear Phys. B, 727 (2005), 1–62, arXiv: hep-th/0504190 | DOI | MR | Zbl
[18] Haldane F. D. M., Ha Z. N. C., Talstra J. C., Benard D., Pasquier V., “Yangian symmetry of integrable quantum chains with long-range interactions and a new description of states in conformal field theory”, Phys. Rev. Lett., 69 (1992), 2021–2025 | DOI | MR | Zbl
[19] Benard D., Gaudin M., Haldane F. D. M., Pasquier V., “Yang–Baxter equation in long-range interacting systems”, J. Phys. A: Math. Gen., 26 (1993), 5219–5236 | DOI | MR
[20] Hikami K., “Yangian symmetry and Virasoro character in a lattice spin system with long-range interactions”, Nuclear Phys. B, 441 (1995), 530–548 | DOI | MR | Zbl
[21] Hikami K., Basu-Mallick B., “Supersymmetric Polychronakos spin chain: motif, distribution function, and character”, Nuclear Phys. B, 566 (2000), 511–528, arXiv: math-ph/9904033 | DOI | MR | Zbl
[22] Bazhanov V. V., Frassek R., Lukowski T., Meneghelli C., Staudacher M., Baxter $Q$-operators and representations of Yangians, arXiv: 1010.3699
[23] Haldane F. D. M., “Physics of the ideal semion gas: spinons and quantum symmetries of the integrable Haldane–Shastry spin chain”, Proc. 16th Taniguchi Symp. (Kashikojima, Japan, 1993), eds. A. Okiji and N. Kawakami, Springer, 1994, 3–20, arXiv: cond-mat/9401001
[24] Basu-Mallick B., Bondyopadhaya N., “Exact partition function of $SU(m|n)$ supersymmetric Haldane–Shastry spin chain”, Nuclear Phys. B, 757 (2006), 280–302, arXiv: hep-th/0607191 | DOI | MR | Zbl
[25] Basu-Mallick B., Ujino H., Wadati M., “Exact spectrum and partition function of $SU(m|n)$ supersymmetric Polychronakos model”, J. Phys. Soc. Japan, 68 (1999), 3219–3226, arXiv: hep-th/9904167 | DOI | MR | Zbl
[26] Basu-Mallick B., Bondyopadhaya N., Hikami K., Sen D., “Boson-fermion duality in $SU(m|n)$ supersymmetric Haldane–Shastry spin chain”, Nuclear Phys. B, 782 (2007), 276–295, arXiv: hep-th/0703240 | DOI | MR | Zbl
[27] Kirilov A. N., Kuniba A., Nakanishi T., “Skew Young diagram method in spectral decomposition of integrable lattice models”, Comm. Math. Phys., 185 (1997), 441–465, arXiv: q-alg/9607027 | DOI | MR
[28] Hikami K., “Exclusion statistics and chiral partition function”, Physics and Combinatorics 2000 (Nagoya), eds. A. N. Kirilov and N. Liskova, World Sci. Publ., River Edge, NJ, 2001, 22–48 | MR | Zbl
[29] Barba J. C., Finkel F., González-López A., Rodríguez M. A., “Inozemtsev's hyperbolic spin model and its related spin chain”, Nuclear Phys. B, 839 (2010), 499–525, arXiv: 1005.0487 | DOI | MR
[30] Frahm H., Inozemstsev V. I., “New family of solvable 1D Heisenberg models”, J. Phys. A: Math. Gen., 27 (1994), L801–L808, arXiv: cond-mat/9405038 | DOI | MR
[31] Basu-Mallick B., Bondyopadhaya N., Sen D., “Low energy properties of the $SU(m|n)$ supersymmetric Haldane–Shastry spin chain”, Nuclear Phys. B, 795 (2008), 596–622, arXiv: 0710.0452 | DOI | MR | Zbl
[32] Enciso A., Finkel F., González-López A., On the level density of spin chains of Haldane–Shastry type, arXiv: 1005.3202
[33] Finkel F., González-López A., “Global properties of the spectrum of the Haldane–Shastry spin chain”, Phys. Rev. B, 72 (2005), 174411, 6 pp., arXiv: cond-mat/0509032 | DOI
[34] Barba J. C., Finkel F., González-López A., Rodríguez M. A., “The Berry–Tabor conjecture for spin chains of Haldane–Shastry type”, Europhys. Lett., 83 (2008), 27005, 6 pp., arXiv: 0804.3685 | DOI