$q$-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra $U_q(u(n,1))$
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the quantum algebra $U_q(\mathfrak{gl}(n+1))$ in its reduction on the subalgebra $U_q(\mathfrak{gl}(n))$ $Z_q(\mathfrak{gl}(n+1),\mathfrak{gl}(n))$ is given in terms of the generators and their defining relations. Using this $Z$-algebra we describe Hermitian irreducible representations of a discrete series for the noncompact quantum algebra $U_q(u(n,1))$ which is a real form of $U_q(\mathfrak{gl}(n+1))$, namely, an orthonormal Gelfand–Graev basis is constructed in an explicit form.
Keywords: quantum algebra; extremal projector; reduction algebra; Shapovalov form; noncompact quantum algebra; discrete series of representations; Gelfand–Graev basis.
@article{SIGMA_2010_6_a9,
     author = {Raisa M. Asherova and \v{C}estm{\'\i}r Burd{\'\i}k and Miloslav Havl{\'\i}\v{c}ek and Yuri F. Smirnov and Valeriy N. Tolstoy},
     title = {$q${-Analog} of {Gelfand{\textendash}Graev} {Basis} for the {Noncompact} {Quantum} {Algebra} $U_q(u(n,1))$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a9/}
}
TY  - JOUR
AU  - Raisa M. Asherova
AU  - Čestmír Burdík
AU  - Miloslav Havlíček
AU  - Yuri F. Smirnov
AU  - Valeriy N. Tolstoy
TI  - $q$-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra $U_q(u(n,1))$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a9/
LA  - en
ID  - SIGMA_2010_6_a9
ER  - 
%0 Journal Article
%A Raisa M. Asherova
%A Čestmír Burdík
%A Miloslav Havlíček
%A Yuri F. Smirnov
%A Valeriy N. Tolstoy
%T $q$-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra $U_q(u(n,1))$
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a9/
%G en
%F SIGMA_2010_6_a9
Raisa M. Asherova; Čestmír Burdík; Miloslav Havlíček; Yuri F. Smirnov; Valeriy N. Tolstoy. $q$-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra $U_q(u(n,1))$. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a9/

[1] Gel'fand I. M., Tsetlin M. L., “Finite-dimensional representations of unimodular matrices group”, Doklady Akad. Nauk SSSR, 71 (1950), 825–828 (in Russian) | MR

[2] Nagel J. G., Moshinsky M., “Operators that lower or raise the irreducible vector spaces of $U_{n-1}$ contained in an irreducible vector space of $U_n$”, J. Math. Phys., 6 (1965), 682–694 | DOI | MR | Zbl

[3] Hou P.-Y.,, “Orthonormal bases and infinitesimal operators of the irreducible representations of group $U_n$”, Sci. Sinica, 15 (1966), 763–772 | MR | Zbl

[4] Asherova R. M., Smirnov Yu. F., Tolstoy V. N., “Projection operators for the simple Lie groups. II. General scheme for construction of lowering operators. The case of the group $SU(n)$”, Teoret. Mat. Fiz., 15:1 (1973), 107–119 (in Russian) | MR

[5] Amer. Math. Soc. Transl. (2), 64 (1967), 116–146 | MR

[6] Barut A., Ra̧czka R., Theory of group representations and applications, Polish Scientific Publishers, Warsaw, 1977 | MR

[7] Enright T. J., Varadarajan V. S., “On an infinitesimal characterization of the discrete series”, Ann. of Math. (2), 102 (1975), 1–15 | DOI | MR | Zbl

[8] Molev A. I., “Unitarizability of some Enright–Varadarajan $u(p,q)$-modules”, Topics in Representation Theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 199–219 | MR

[9] Mickelsson J., “A description of discrete series using step algebra”, Math. Scand., 41 (1977), 63–78 | MR | Zbl

[10] Smirnov Yu. F., Kharitonov Yu. I., “Noncompact quantum algebra $u_q(2,1)$: positive discrete series of irreducible representations”, Proceedings of International Symposium “Symmetries in Science XI” (July 2003, Bregenz, Austria), eds. B. Gruber, G. Marmo and N. Ioshinaga, Kluwer Acad. Publ., Dordrecht, 2004, 505–526 ; math.QA/0311283 | MR

[11] Smirnov Yu. F., Kharitonov Yu. I., Asherova R. M., “Noncompact quantum algebra $u_q(2,1)$: intermediate discrete series of unitary irreducible representations”, Phys. Atomic Nuclei, 69 (2006), 1045–1057 | DOI

[12] Groza V. A., Iorgov N. Z., Klimyk A. U., “Representations of the quantum algebra $U_q(u_{n,1})$”, Algebr. Represent. Theory, 3 (2000), 105–130 ; math.QA/9805032 | DOI | MR | Zbl

[13] Guizzi V., “A classification of unitary highest weight modules of the quantum analogue of the symmetric pair $(A_n, A_{n-1})$”, J. Algebra, 192 (1997), 102–129 | DOI | MR | Zbl

[14] Tolstoy V. N., “Extremal projectors for quantized Kac–Moody superalgebras and some of their applications”, Quantum Groups (Clausthal, 1989), Lecture Notes in Phys., 370, Springer, Berlin, 1990, 118–125 | MR

[15] Tolstoy V. N., “Projection operator method for quantum groups”, Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 457–488 ; math.QA/0104045 | MR | Zbl

[16] Shapovalov N. N., “On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra”, Funct. Anal. Appl., 6 (1972), 307–312 | DOI | Zbl