On a Family of $2$-Variable Orthogonal Krawtchouk Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a hypergeometric proof involving a family of $2$-variable Krawtchouk polynomials that were obtained earlier by Hoare and Rahman [SIGMA 4 (2008), 089, 18 pages] as a limit of the $9-j$ symbols of quantum angular momentum theory, and shown to be eigenfunctions of the transition probability kernel corresponding to a “poker dice” type probability model. The proof in this paper derives and makes use of the necessary and sufficient conditions of orthogonality in establishing orthogonality as well as indicating their geometrical significance. We also derive a $5$-term recurrence relation satisfied by these polynomials.
Keywords: hypergeometric functions; Krawtchouk polynomials in $1$ and $2$ variables; Appell–Kampe–de Feriet functions; integral representations; transition probability kernels; recurrence relations.
@article{SIGMA_2010_6_a89,
     author = {F. Alberto Gr\"unbaum and Mizan Rahman},
     title = {On {a~Family} of $2${-Variable} {Orthogonal} {Krawtchouk} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a89/}
}
TY  - JOUR
AU  - F. Alberto Grünbaum
AU  - Mizan Rahman
TI  - On a Family of $2$-Variable Orthogonal Krawtchouk Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a89/
LA  - en
ID  - SIGMA_2010_6_a89
ER  - 
%0 Journal Article
%A F. Alberto Grünbaum
%A Mizan Rahman
%T On a Family of $2$-Variable Orthogonal Krawtchouk Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a89/
%G en
%F SIGMA_2010_6_a89
F. Alberto Grünbaum; Mizan Rahman. On a Family of $2$-Variable Orthogonal Krawtchouk Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a89/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[2] Aomoto K., Kita M., Hypergeometric functions, Springer, Tokyo, 1994 (in Japanese)

[3] Cooper R. D., Hoare M. R., Rahman M., “Stochastic processes and special functions: on the probabilistic origin of some positive kernels associated with classical orthogonal polynomials”, J. Math. Anal. Appl., 61 (1977), 262–291 | DOI | MR | Zbl

[4] Dunkl C., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[5] Feller W., An introduction to probability theory and its applications, v. 1, 3rd ed., Wiley, 1967 | MR

[6] Gelfand I. M., “General theory of hypergeometric functions”, Sov. Math. Dokl., 33 (1986), 573–577 | MR

[7] Geronimo J. S., Iliev P.,, “Bispectrality of multivariable Racah–Wilson poynomials”, Constr. Approx., 31 (2010), 417–457, arXiv: 0705.1469 | DOI | MR | Zbl

[8] Grünbaum F. A., “The Rahman polynomials are bispectral”, SIGMA, 3 (2007), 065, 11 pp., arXiv: 0705.0468 | DOI | MR | Zbl

[9] Hoare M. R., Rahman M., “Distributive processes in discrete systems”, Phys. A, 97 (1979), 1–41 | DOI | MR

[10] Hoare M. R., Rahman M., “Cumulative Bernoulli trials and Krawtchouk processes”, Stochastic Process. Appl., 16 (1983), 113–139 | DOI | MR

[11] Hoare M. R., Rahman M., “Cumulative hypergeometric processes: a statistical role for the $_nF_{n-1}$ functions”, J. Math. Anal. Appl., 135 (1988), 615–626 | DOI | MR | Zbl

[12] Hoare M. R., Rahman M., “A probabilistic origin for a new class of bivariate polynomials”, SIGMA, 4 (2008), 089, 18 pp., arXiv: 0812.3879 | DOI | MR | Zbl

[13] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 1, 2, 3, Bateman Manuscript Project, McGraw-Hill Book Co., New York, 1953

[14] Iliev P., Terwilliger P., The Rahman polynomials and the Lie algebra $sl_3(C)$, arXiv: 1006.5062

[15] Iliev P., Xu Y., “Discrete orthogonal polynomials and difference equations in several variables”, Adv. Math., 212 (2007), 1–36, arXiv: math.CA/0508039 | DOI | MR | Zbl

[16] Virchenko N., Katchanovski I., Haidey V., Andruskiw R., Voronka R. (eds.), Development of mathematical ideas of Mykhailo Kravchuk, Kyiv, New York, 2004

[17] Mizukawa H., “Zonal spherical functions on the complex reflection groups and $(n+1,m+1)$ hypergeometric functions”, Adv. Math., 184 (2004), 1–17 | DOI | MR | Zbl

[18] Mizukawa H., Orthogonality relations for multivariate Krawtchouck polynomials, arXiv: 1009.1203

[19] Mizukawa H., Tanaka H., “$(n+1,m+1)$-hypergeometric functions associated to character algebras”, Proc. Amer. Math. Soc., 132 (2004), 2613–2618 | DOI | MR | Zbl