@article{SIGMA_2010_6_a89,
author = {F. Alberto Gr\"unbaum and Mizan Rahman},
title = {On {a~Family} of $2${-Variable} {Orthogonal} {Krawtchouk} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a89/}
}
F. Alberto Grünbaum; Mizan Rahman. On a Family of $2$-Variable Orthogonal Krawtchouk Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a89/
[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[2] Aomoto K., Kita M., Hypergeometric functions, Springer, Tokyo, 1994 (in Japanese)
[3] Cooper R. D., Hoare M. R., Rahman M., “Stochastic processes and special functions: on the probabilistic origin of some positive kernels associated with classical orthogonal polynomials”, J. Math. Anal. Appl., 61 (1977), 262–291 | DOI | MR | Zbl
[4] Dunkl C., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[5] Feller W., An introduction to probability theory and its applications, v. 1, 3rd ed., Wiley, 1967 | MR
[6] Gelfand I. M., “General theory of hypergeometric functions”, Sov. Math. Dokl., 33 (1986), 573–577 | MR
[7] Geronimo J. S., Iliev P.,, “Bispectrality of multivariable Racah–Wilson poynomials”, Constr. Approx., 31 (2010), 417–457, arXiv: 0705.1469 | DOI | MR | Zbl
[8] Grünbaum F. A., “The Rahman polynomials are bispectral”, SIGMA, 3 (2007), 065, 11 pp., arXiv: 0705.0468 | DOI | MR | Zbl
[9] Hoare M. R., Rahman M., “Distributive processes in discrete systems”, Phys. A, 97 (1979), 1–41 | DOI | MR
[10] Hoare M. R., Rahman M., “Cumulative Bernoulli trials and Krawtchouk processes”, Stochastic Process. Appl., 16 (1983), 113–139 | DOI | MR
[11] Hoare M. R., Rahman M., “Cumulative hypergeometric processes: a statistical role for the $_nF_{n-1}$ functions”, J. Math. Anal. Appl., 135 (1988), 615–626 | DOI | MR | Zbl
[12] Hoare M. R., Rahman M., “A probabilistic origin for a new class of bivariate polynomials”, SIGMA, 4 (2008), 089, 18 pp., arXiv: 0812.3879 | DOI | MR | Zbl
[13] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 1, 2, 3, Bateman Manuscript Project, McGraw-Hill Book Co., New York, 1953
[14] Iliev P., Terwilliger P., The Rahman polynomials and the Lie algebra $sl_3(C)$, arXiv: 1006.5062
[15] Iliev P., Xu Y., “Discrete orthogonal polynomials and difference equations in several variables”, Adv. Math., 212 (2007), 1–36, arXiv: math.CA/0508039 | DOI | MR | Zbl
[16] Virchenko N., Katchanovski I., Haidey V., Andruskiw R., Voronka R. (eds.), Development of mathematical ideas of Mykhailo Kravchuk, Kyiv, New York, 2004
[17] Mizukawa H., “Zonal spherical functions on the complex reflection groups and $(n+1,m+1)$ hypergeometric functions”, Adv. Math., 184 (2004), 1–17 | DOI | MR | Zbl
[18] Mizukawa H., Orthogonality relations for multivariate Krawtchouck polynomials, arXiv: 1009.1203
[19] Mizukawa H., Tanaka H., “$(n+1,m+1)$-hypergeometric functions associated to character algebras”, Proc. Amer. Math. Soc., 132 (2004), 2613–2618 | DOI | MR | Zbl