@article{SIGMA_2010_6_a88,
author = {Anastasia Doikou and Nikos Karaiskos},
title = {Junction {Type} {Representations} of the {Temperley{\textendash}Lieb} {Algebra} and {Associated} {Symmetries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a88/}
}
TY - JOUR AU - Anastasia Doikou AU - Nikos Karaiskos TI - Junction Type Representations of the Temperley–Lieb Algebra and Associated Symmetries JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a88/ LA - en ID - SIGMA_2010_6_a88 ER -
%0 Journal Article %A Anastasia Doikou %A Nikos Karaiskos %T Junction Type Representations of the Temperley–Lieb Algebra and Associated Symmetries %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a88/ %G en %F SIGMA_2010_6_a88
Anastasia Doikou; Nikos Karaiskos. Junction Type Representations of the Temperley–Lieb Algebra and Associated Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a88/
[1] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, London, 1982 ; Baxter R. J., “Partition function of the eight vertex lattice model”, Ann. Physics, 70 (1972), 193–228 ; Baxter R. J., “Asymptotically degenerate maximum eigenvalues of the eight-vertex model transfer matrix and interfacial tension”, J. Statist. Phys., 8 (1973), 25–55 | MR | Zbl | DOI | MR | Zbl | DOI | MR
[2] Bourbaki N., Groupes et algèbres de Lie, Ch. 4, Exerc. 22–24, Hermann, 1968 | MR
[3] Cherednik I., “A unification of Knizhnik–Zamolodchikov and Dunkl operators via affine Hecke algebras”, Invent. Math., 106 (1991), 411–431 | DOI | MR
[4] Cherednik I. V., “Factorizing particles on a half line and root systems”, Theoret. and Math. Phys., 61 (1984), 977–983 | DOI | MR | Zbl
[5] Delius G., Mackay N., “Quantum group symmetry in sine-Gordon and affine Toda field theories on the half-line”, Comm. Math. Phys., 233 (2003), 173–190, arXiv: hep-th/0112023 | DOI | MR | Zbl
[6] Doikou A., “Boundary non-local charges from the open spin chain”, J. Stat. Mech. Theory Exp., 2005 (2005), P12005, 17 pp., arXiv: ; Doikou A., “Asymmetric twin representation: the transfer matrix symmetry”, SIGMA, 3 (2007), 009, 19 pp., arXiv: math-ph/0402067math-ph/0606040 | DOI | MR | DOI | MR | Zbl
[7] Doikou A., Martin P. P., “Hecke algebraic approach to the reflection equation for spin chains”, J. Phys. A: Math. Gen., 36 (2003), 2203–2225, arXiv: ; Doikou A., Martin P. P, “On quantum group symmetry and Bethe ansatz for the asymmetric twin spin chain with integrable boundary”, J. Stat. Mech. Theory Exp., 2006 (2006), P06004, 43 pp., arXiv: hep-th/0206076hep-th/0503019 | DOI | MR | Zbl | DOI | MR
[8] Doikou A., “From affine Hecke algebras to boundary symmetries”, Nuclear Phys. B, 725 (2005), 493–530, arXiv: math-ph/0409060 | DOI | MR | Zbl
[9] Fradkin E. H., Field theories of condensed matter systems, Frontiers in Physics, 82, Addison-Wesley, Redwood City, CA, 1991 | MR | Zbl
[10] Graham J. J., Lehrer G. I., “Cellular algebras”, Invent. Math., 123 (1996), 1–34 | DOI | MR | Zbl
[11] Isaev A. P., Ogievetsky O. V., “On Baxterized solutions of reflection equation and integrable chain models”, Nuclear Phys. B, 760 (2007), 167–183, arXiv: ; Isaev A. P., Ogievetsky O. V., Os'kin A. F., “Chain models on Hecke algebra for corner type representations”, Rep. Math. Phys., 61 (2008), 311–317, arXiv: math-ph/05100780710.0261 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Jimbo M., “Quantum $R$ matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl
[13] Jimbo M., “A $q$-difference analogue of $U(g)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 ; Jimbo M., “A $q$-analogue of $U(gl(N+1))$, Hecke algebra, and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–252 | DOI | MR | Zbl | DOI | MR | Zbl
[14] Kazhdan D., Lusztig G., “Representations of Coxeter groups and Hecke algebras”, Invent. Math., 53 (1979), 165–184 | DOI | MR | Zbl
[15] Kulish P. P., Mudrov A. I., “Baxterization of solutions to reflection equation with Hecke $R$-matrix”, Lett. Math. Phys., 75 (2006), 151–170, arXiv: ; Kulish P. P., Manojlovic N., Nagy Z., “Quantum symmetry algebras of spin systems related to Temperley–Lieb $R$-matrices”, J. Math. Phys., 49 (2008), 023510, 9 pp., arXiv: math.QA/05082890712.3154 | DOI | MR | Zbl | DOI | MR | Zbl
[16] Levy D., Martin P. P., “Hecke algebra solutions to the reflection equation”, J. Phys. A: Math. Gen., 27 (1994), L521–L526 ; Martin P. P., Woodcock D., Levy D., “A diagrammatic approach to Hecke algebras of the reflection equation”, J. Phys. A: Math. Gen., 33 (2000), 1265–1296 | DOI | MR | Zbl | DOI | MR | Zbl
[17] Martin P. P., Woodcock D., “Generalized blob algebras and alcove geometry”, LMS J. Comput. Math., 6 (2003), 249–296, arXiv: ; Martin P. P., Saleur H., “The blob algebra and the periodic Temperley–Lieb algebra”, Lett. Math. Phys., 30 (1994), 189–206, arXiv: math.RT/0205263hep-th/9302094 | MR | Zbl | MR | Zbl
[18] Martin P. P., Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991 | MR | Zbl
[19] Mezincescu L., Nepomechie R. I., “Fractional-spin integrals of motion for the boundary sine-Gordon model at the free fermion point”, Internat. J. Modern Phys. A, 13 (1998), 2747–2764, arXiv: hep-th/9709078 | DOI | MR | Zbl
[20] Nichols A., “Spectral equivalences and symmetry breaking in integrable $SU_q(N)$ spin chains with boundaries”, J. Stat. Mech. Theory Exp., 2005 (2005), P09009, 31 pp., arXiv: ; de Gier J., Nichols A., “The two-boundary Temperley–Lieb algebra”, J. Algebra, 321 (2009), 1132–1167, arXiv: hep-th/0507209math.RT/0703338 | DOI | MR | DOI | MR | Zbl
[21] Ram A., Ramagge J., “Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory”, A Tribute to C. S. Seshadri (Chennai, 2002), Trends Math., Birkhäuser, Basel, 2003, 428–466, arXiv: math.RT/0401322 | MR | Zbl
[22] Read N., Saleur H., “Associative-algebraic approach to logarithmic conformal field theories”, Nuclear Phys. B, 777 (2007), 316–351, arXiv: ; Pearce P. A., Rasmussen J., Ruelle P.,, “Integrable boundary conditions and $W$-extended fusion in the logarithmic minimal models $LM(1,p)$”, J. Phys. A: Math. Theor., 41 (2008), 295201, 16 pp., arXiv: hep-th/07011170803.0785 | DOI | MR | Zbl | DOI | MR | Zbl
[23] Sklyanin E. K., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl
[24] Temperley H. N. V., Lieb E. H., “Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem”, Proc. Roy. Soc. London Ser. A, 322 (1971), 251–280 | DOI | MR | Zbl