Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The kinetic energy operator with position-dependent-mass in plane polar coordinates is obtained. The separability of the corresponding Schrödinger equation is discussed. A hypothetical toy model is reported and two exactly solvable examples are studied.
Keywords: position dependent mass; polar coordinates; separability; exact solvability.
@article{SIGMA_2010_6_a87,
     author = {S. Habib Mazharimousavi and Omar Mustafa},
     title = {Flatland {Position-Dependent-Mass:} {Polar} {Coordinates,} {Separability} and {Exact} {Solvability}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a87/}
}
TY  - JOUR
AU  - S. Habib Mazharimousavi
AU  - Omar Mustafa
TI  - Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a87/
LA  - en
ID  - SIGMA_2010_6_a87
ER  - 
%0 Journal Article
%A S. Habib Mazharimousavi
%A Omar Mustafa
%T Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a87/
%G en
%F SIGMA_2010_6_a87
S. Habib Mazharimousavi; Omar Mustafa. Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a87/

[1] Puente A., Casas M., “Non-local energy density functional for atoms and metal clusters”, Comput. Mater Sci., 2 (1994), 441–449 | DOI

[2] Plastino A. R., Casas M., Plastino A., “Bohmian quantum theory of motion for particles with position-dependent effective mass”, Phys. Lett. A, 281 (2001), 297–304 | DOI | MR | Zbl

[3] Schmidt A. G. M., “Wave-packet revival for the Schrödinger equation with position-dependent mass”, Phys. Lett. A, 353 (2006), 459–462 | DOI

[4] Dong S. H., Lozada-Cassou M., “Exact solutions of the Schrödinger equation with the position-dependent mass for a hard-core potential”, Phys. Lett. A, 337 (2005), 313–320 | DOI | Zbl

[5] Vakarchuk I. O., “The Kepler problem in Dirac theory for a particle with position-dependent mass”, J. Phys. A: Math. Gen., 38 (2005), 4727–4734, arXiv: quant-ph/0502105 | DOI | MR | Zbl

[6] Cai C.-Y., Ren Z.-Z., Ju G.-X., “Exact solutions to three-dimensional Schrödinger equation with an exponentially position-dependent mass”, Commun. Theor. Phys. (Beijing), 43 (2005), 1019–1022 | DOI | MR

[7] Roy B., Roy P., “Effective mass Schrödinger equation and nonlinear algebras”, Phys. Lett. A, 340 (2005), 70–73 | DOI | Zbl

[8] Gönül B., Koçak M., “Remarks on exact solvability of quantum systems with spatially varying effective mass”, Chinese Phys. Lett., 20 (2005), 2742–2745 | DOI

[9] de Souza Dutra A., Almeida C. A. S., “Exact solvability of potentials with spatially dependent effective masses”, Phys Lett. A, 275 (2000), 25–30 | DOI | MR | Zbl

[10] Mustafa O., Mazharimousavi S. H., “Ordering ambiguity revisited via position dependent mass pseudo-momentum operators”, Internat. J. Theoret. Phys., 46 (2007), 1786–1796, arXiv: quant-ph/0607158 | DOI | MR | Zbl

[11] Cruz y Cruz S., Negro J., Nieto L. M., “Classical and quantum position-dependent mass harmonic oscillators”, Phys. Lett. A, 369 (2007), 400–406 | DOI | MR

[12] Cruz y Cruz S., Rosas-Ortiz O., “Position-dependent mass oscillators and coherent states”, J. Phys. A: Math. Theor., 42 (2009), 185205, 21 pp. | DOI | MR | Zbl

[13] Lekner J., “Reflectionless eigenstates of the sech$^2$ potential”, Amer. J. Phys., 75 (2007), 1151–1157 | DOI

[14] Quesne C., Tkachuk V. M., “Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37 (2004), 4267–4281, arXiv: math-ph/0403047 | DOI | MR | Zbl

[15] Jiang L., Yi L.-Z., Jia C.-S., “Exact solutions of the Schrödinger equation with position-dependent mass for some Hermitian and non-Hermitian potentials”, Phys. Lett. A, 345 (2005), 279–286 | DOI | MR | Zbl

[16] Mustafa O., Mazharimousavi S. H., “Quantum particles trapped in a position-dependent mass barrier: a $d$-dimensional recipe”, Phys. Lett. A, 358 (2006), 259–261, arXiv: quant-ph/0603134 | DOI | Zbl

[17] Diaz J. I., Negro J., Nieto L. M., Rosas-Ortiz O., “The supersymmetric modified Pöschl–Teller and delta well potentials”, J. Phys. A: Math. Gen., 32 (1999), 8447–8460, arXiv: quant-ph/9910017 | DOI | MR | Zbl

[18] Alhaidari A. D., “Solutions of the nonrelativistic wave equation with position-dependent effective mass”, Phys. Rev. A, 66 (2002), 042116, 7 pp., arXiv: ; Gritsev V. V., Kurochkin Y. A., “Model of excitations in quantum dots based on quantum mechanics in spaces of constant curvature”, Phys. Rev. B, 64 (2001), 035308, 9 pp. quant-ph/0207061 | DOI | DOI

[19] Mustafa O., Mazharimousavi S. H., “$d$-dimensional generalization of the point canonical transformation for a quantum particle with position-dependent mass”, J. Phys. A: Math. Gen., 39 (2006), 10537–10547, arXiv: ; Lévai G., Özer O., “An exactly solvable Schrödinger equation with finite positive position-dependent effective mass”, J. Math. Phys., 51 (2010), 092103, 13 pp. math-ph/0602044 | DOI | MR | Zbl | DOI

[20] Bagchi B., Banerjee A., Quesne C., Tkachuk V. M., “Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass”, J. Phys. A: Math. Gen., 38 (2005), 2929–2945, arXiv: ; Bagchi B., Ganguly A., Sinha A., “Supersymmetry across nanoscale heterojunction”, Phys. Lett. A, 374 (2010), 2397–2400, arXiv: quant-ph/04120161002.2732 | DOI | MR | Zbl | DOI

[21] Yu J., Dong S.-H., “Exactly solvable potentials for the Schrödinger equation with spatially dependent mass”, Phys. Lett. A, 325 (2004), 194–198 | DOI | MR | Zbl

[22] Quesne C., “First-order intertwining operators and position-dependent mass Schrödinger equations in $d$ dimensions”, Ann. Physics, 321 (2006), 1221–1239, arXiv: quant-ph/0508216 | DOI | MR | Zbl

[23] Tanaka T., “$N$-fold supersymmetry in quantum systems with position-dependent mass”, J. Phys. A: Math. Gen., 39 (2006), 219–234, arXiv: quant-ph/0509132 | DOI | MR | Zbl

[24] de Souza Dutra A., “Ordering ambiguity versus representation”, J. Phys. A: Math. Gen., 39 (2006), 203–208, arXiv: 0705.3247 | DOI | MR | Zbl

[25] von Roos O., “Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 27 (1983), 7547–7552 ; Lévy-Leblond J. M., “Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, 52 (1995), 1845–1849 | DOI | DOI | MR

[26] Mustafa O., Mazharimousavi S. H., “Non-Hermitian $d$-dimensional Hamiltonians with position-dependent mass and their $\eta$-pseudo-Hermiticity generators”, Czechoslovak J. Phys., 56 (2006), 967–975, arXiv: quant-ph/0603272 | DOI | MR | Zbl

[27] Mustafa O., Mazharimousavi S. H., “$\eta$-weak-pseudo-Hermiticity generators and exact solvability”, Phys. Lett. A, 357 (2006), 295–297, arXiv: quant-ph/0604106 | DOI | MR | Zbl

[28] Mustafa O., Mazharimousavi S. H., “Complexified von Roos Hamiltonian's $\eta$-weak-pseudo-Hermiticity, isospectrality and exact solvability”, J. Phys. A: Math. Theor., 41 (2008), 244020, 8 pp., arXiv: 0707.3738 | DOI | MR | Zbl

[29] Mustafa O., Mazharimousavi S. H., “A singular position-dependent mass particle in an infinite potential well”, Phys. Lett. A, 373 (2009), 325–327, arXiv: 0807.3030 | DOI | MR

[30] Mustafa O., “The shifted-1/$N$-expansion method for two-dimensional hydrogenic donor states in an arbitrary magnetic field”, J. Phys.: Condens. Matter, 5 (1993), 1327–1332 | DOI