@article{SIGMA_2010_6_a84,
author = {Tomoki Nakanishi and Roberto Tateo},
title = {Dilogarithm {Identities} for {Sine-Gordon} and {Reduced} {Sine-Gordon} {Y-Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a84/}
}
TY - JOUR AU - Tomoki Nakanishi AU - Roberto Tateo TI - Dilogarithm Identities for Sine-Gordon and Reduced Sine-Gordon Y-Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a84/ LA - en ID - SIGMA_2010_6_a84 ER -
Tomoki Nakanishi; Roberto Tateo. Dilogarithm Identities for Sine-Gordon and Reduced Sine-Gordon Y-Systems. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a84/
[1] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl
[2] Bazhanov V. V., Reshetikhin N., “Restricted solid-on-solid models connected with simply laced algebras and conformal field theory”, J. Phys. A: Math. Gen., 23 (1990), 1477–1492 | DOI | MR | Zbl
[3] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl
[4] Bernard D., LeClair A., “Residual quantum symmetries of the restricted sine-Gordon theories”, Nuclear Phys. B, 340 (1990), 721–751 | DOI | MR
[5] Chapoton F., “Functional identities for the Rogers dilogarithm associated to cluster Y-systems”, Bull. London Math. Soc., 37 (2005), 755–760 | DOI | MR | Zbl
[6] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations. II. Applications to cluster algebras”, J. Amer. Math. Soc., 23 (2010), 749–790, arXiv: 0904.0676 | DOI | Zbl
[7] Fomin S., Zelevinsky A., “Cluster algebras. I. Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[8] Fomin S., Zelevinsky A., “Cluster algebras. II. Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI | MR | Zbl
[9] Fomin S., Zelevinsky A., “Y-systems and generalized associahedra”, Ann. of Math. (2), 158 (2003), 977–1018, arXiv: hep-th/0111053 | DOI | MR | Zbl
[10] Fomin S., Zelevinsky A., “Cluster algebras. IV. Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RT/0602259 | DOI | MR | Zbl
[11] Frenkel E., Szenes A., “Thermodynamic Bethe ansatz and dilogarithm identities. I”, Math. Res. Lett., 2 (1995), 677–693, arXiv: hep-th/9506215 | MR | Zbl
[12] Gliozzi F., Tateo R., “ADE functional dilogarithm identities and integrable models”, Phys. Lett. B, 348 (1995), 677–693, arXiv: hep-th/9411203 | DOI | MR
[13] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras. I. Type $B_r$, arXiv: 1001.1880
[14] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras. II. Types $C_r$, $F_4$, and $G_2$, arXiv: 1001.1881
[15] Inoue R., Iyama O., Kuniba A., Nakanishi T., Suzuki J., “Periodicities of T and Y-systems”, Nagoya Math. J., 197 (2010), 59–174, arXiv: 0812.0667 | MR | Zbl
[16] Keller B., “Cluster algebras, quiver representations and triangulated categories”, Triangulated Categories, London Mathematical Society Lecture Note Series, 375, eds. T. Holm, P. Jørgensen and R. Rouquier, Cambridge University Press, 2010, 76–160, arXiv: 0807.1960
[17] Keller B., The periodicity conjecture for pairs of Dynkin diagrams, arXiv: 1001.1531
[18] Kirillov A. N., Reshetikhin N. Y., “Exact solution of the Heisenberg XXZ model of spin $s$”, J. Soviet Math., 35 (1986), 2627–2643 | DOI | Zbl
[19] Kirillov A. N., Reshetikhin N. Y., “Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras”, J. Soviet Math., 52 (1990), 3156–3164 | DOI | MR
[20] Klassen T. R., Melzer E., “Purely elastic scattering theories and their ultraviolet limits”, Nuclear Phys. B, 338 (1990), 485–528 | DOI | MR
[21] Klümper A., Pearce P. A., “Conformal weights of RSOS lattice models and their fusion hierarchies”, Phys. A, 183 (1992), 304–350 | DOI | MR
[22] Kuniba A., “Thermodynamics of the $U_q(X^{(1)}_r)$ Bethe ansatz system with $q$ a root of unity”, Nuclear Phys. B, 389 (1993), 209–244 | DOI | MR
[23] Kuniba A., Nakanishi T., “Spectra in conformal field theories from the Rogers dilogarithm”, Modern Phys. Lett. A, 7 (1992), 3487–3494, arXiv: hep-th/9206034 | DOI | MR | Zbl
[24] Kuniba A., Nakanishi T., Suzuki J., “Functional relations in solvable lattice models. I. Functional relations and representation theory”, Internat. J. Modern Phys. A, 9 (1994), 5215–5266, arXiv: hep-th/9309137 | DOI | MR | Zbl
[25] Lewin L., Polylogarithms and associated functions, North-Holland, Amsterdam, 1981 | MR | Zbl
[26] Nakanishi T., “Dilogarithm identities for conformal field theories and cluster algebras: simply laced case”, Nagoya Math. J. (to appear) , arXiv: 0909.5480
[27] Onsager L., “Crystal statistics. I. A two-dimensional model with an order disorder transition”, Phys. Rev., 65 (1944), 117–149 | DOI | MR | Zbl
[28] Plamondon P., Cluster algebras via cluster categories with infinite-dimensional morphism spaces, arXiv: 1004.0830
[29] Plamondon P., Cluster characters for cluster categories with infinite-dimensional morphism spaces, arXiv: 1002.4956
[30] Ravanini R., Tateo R., Valleriani A., “Dynkin TBA's”, Internat. J. Modern Phys. A, 8 (1993), 1707–1727, arXiv: hep-th/9207040 | DOI | MR
[31] Smirnov F. A., “Reductions of the sine-Gordon model as a perturbation of minimal models of conformal field theory”, Nuclear Phys. B, 337 (1990), 156–180 | DOI | MR
[32] Tateo R., “New functional dilogarithm identities and sine-Gordon Y-systems”, Phys. Lett. B, 355 (1995), 157–164, arXiv: hep-th/9505022 | DOI | MR
[33] Zamolodchikov A. B., “Integrable field theory from conformal field theory”, Integrable Systems in Quantum Field Theory and Statistical Mechanics, Adv. Stud. Pure Math., 19, Academic Press, Boston, MA, 1989, 641–674 | MR
[34] Zamolodchikov A. B., “Thermodynamic Bethe ansatz in relativistic models: scaling 3-state Potts and Lee–Yang models”, Nuclear Phys. B, 342 (1990), 695–720 | DOI | MR
[35] Zamolodchikov A. B., Zamolodchikov A. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Physics, 120 (1979), 253–291 | DOI | MR
[36] Zamolodchikov A. B., “On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories”, Phys. Lett. B, 253 (1991), 391–394 | DOI | MR