@article{SIGMA_2010_6_a82,
author = {Everton M. C. Abreu and Albert C. R. Mendes and Wilson Oliveira and Adriano O. Zangirolami},
title = {The {Noncommutative} {Doplicher{\textendash}Fredenhagen{\textendash}Roberts{\textendash}Amorim} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a82/}
}
TY - JOUR AU - Everton M. C. Abreu AU - Albert C. R. Mendes AU - Wilson Oliveira AU - Adriano O. Zangirolami TI - The Noncommutative Doplicher–Fredenhagen–Roberts–Amorim Space JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a82/ LA - en ID - SIGMA_2010_6_a82 ER -
%0 Journal Article %A Everton M. C. Abreu %A Albert C. R. Mendes %A Wilson Oliveira %A Adriano O. Zangirolami %T The Noncommutative Doplicher–Fredenhagen–Roberts–Amorim Space %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a82/ %G en %F SIGMA_2010_6_a82
Everton M. C. Abreu; Albert C. R. Mendes; Wilson Oliveira; Adriano O. Zangirolami. The Noncommutative Doplicher–Fredenhagen–Roberts–Amorim Space. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a82/
[1] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl
[2] Yang C. N., “On quantized space-time”, Phys. Rev., 72 (1947), 874–874 | DOI | MR | Zbl
[3] Green M., Schwarz J. H., Witten E., Superstring theory, Cambridge University Press, Cambridge, 1987; Polchinski J., String theory, v. 1 and 2, Cambridge University Press, Cambridge, 1998; Szabo R. J., An introduction to string theory and D-brane dynamics, Imperial College Press, London, 2004 | MR | Zbl
[4] Deriglazov A. A., “Quantum mechanics on noncommutative plane and sphere from constrained systems”, Phys. Lett. B, 530 (2002), 235–243, arXiv: hep-th/0201034 | DOI | MR | Zbl
[5] Deriglazov A. A., “Noncommutative relativistic particle on the electromagnetic background”, Phys. Lett. B, 555 (2003), 83–88, arXiv: hep-th/0208201 | DOI | MR | Zbl
[6] Deriglazov A. A., Noncommutative version of an arbitrary nondegenerate mechanics, arXiv: hep-th/0208072
[7] Chakraborty B., Gangopadhyay S., Saha A., “Seiberg–Witten map and Galilean symmetry violation in a non-commutative planar system”, Phys. Rev. D, 70 (2004), 107707, 4 pp., arXiv: ; Scholtz F. G., Chakraborty B., Gangopadhyay S., Hazra A. G., “Dual families of noncommutative quantum systems”, Phys. Rev. D, 71 (2005), 085005, 11 pp., arXiv: ; Gangopadhyay S., Scholtz F. G., “Path-integral action of a particle in the noncommutative plane”, Phys. Rev. Lett., 102 (2009), 241602, 4 pp., arXiv: ; Banerjee R., Lee C., Yang H. S., “Seiberg–Witten-type maps for currents and energy momentum tensors in noncommutative gauge theories”, Phys. Rev. D, 70 (2004), 065015, 7 pp., arXiv: ; Banerjee R., Kumar K., “Seiberg–Witten maps and commutator anomalies in noncommutative electrodynamics”, Phys. Rev. D, 72 (2005), 085012, 10 pp., arXiv: hep-th/0312292hep-th/05021430904.0379hep-th/0312103hep-th/0505245 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR
[8] Alvarez-Gaumé L., Meyer F., Vázquez-Mozo M. A., “Comments on noncommutative gravity”, Nuclear Phys. B, 753 (2006), 92–117, arXiv: ; Calmet X., Kobakhidze A., “Noncommutative general relativity”, Phys. Rev. D, 72 (2005), 045010, 5 pp., arXiv: ; Harikumar E., Rivelles V. O., “Noncommutative gravity”, Classical Quantum Gravity, 23 (2006), 7551–7560, arXiv: ; Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Modern Phys., 73 (2001), 977–1029, arXiv: ; Szabo R. J., “Quantum gravity, field theory and signatures of noncommutative spacetime”, Gen. Relativity Gravitation, 42 (2010), 1–29, arXiv: ; Szabo R. J., “Symmetry, gravity and noncommutativity”, Classical Quantum Gravity, 23 (2006), R199–R242, arXiv: ; Müller-Hoissen F., “Noncommutative geometries and gravity”, Recent Developments in Gravitation and Cosmology, AIP Conf. Proc., 977, Amer. Inst. Phys., Melville, NY, 2008, 12–29, arXiv: ; Freidel L., Livine E. R., “3D quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: ; Rivelles V., “Noncommutative field theories and gravity”, Phys. Lett. B, 558 (2003), 191–196, arXiv: ; Steinacker H., “Emergent gravity from noncommutative gauge theory”, J. High Energy Phys., 2007:12 (2007), 049, 36 pp., arXiv: ; Steinacker H., “Emergent gravity and noncommutative branes from Yang–Mills matrix models”, Nuclear Phys. B, 810 (2009), 1–39, arXiv: ; Banerjee R., Yang H. S., “Exact Seiberg–Witten map, induced gravity and topological invariants in non-commutative field theories”, Nuclear Phys. B, 708 (2005), 434–450, arXiv: ; Banerjee R., Chakraborty B., Ghosh S., Mukherjee P., Samanta S., “Topics in noncommutative geometry inspired physics”, Found. Phys., 39 (2009), 1297–1345, arXiv: ; Banerjee R., Mukherjee P., Samanta S., “Lie algebraic noncommutative gravity”, Phys. Rev. D, 75 (2007), 125020, 7 pp., arXiv: hep-th/0605113hep-th/0506157hep-th/0607115hep-th/01060480906.2913hep-th/06062330710.4418hep-th/0512113hep-th/02122620708.24260806.2032hep-th/04040640909.1000hep-th/0703128 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[9] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299, arXiv: hep-th/0109162 | DOI | MR | Zbl
[10] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 ; Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | DOI | MR | Zbl
[11] Connes A., Noncommutative geometry, Academic Press, Inc., an Diego, CA, 1994 | MR | Zbl
[12] Connes A., Rieffel M. A., “Yang–Mills for noncommutative two-tori”, Operator Algebras and Mathematical Physics (Iowa City, Iowa, 1985), Contemp. Math., 62, Amer. Math. Soc., Providence, RI, 1987, 237–266 | MR
[13] Chamseddine A. H., Felder G., Fröhlich J., “Gravity in non-commutative geometry”, Comm. Math. Phys., 155 (1993), 205–218, arXiv: ; Kalau W., Walze M., “Gravity, non-commutative geometry and the Wodzicki residue”, J. Geom. Phys., 16 (1995), 327–344, arXiv: ; Kastler D., “The Dirac operator and gravitation”, Comm. Math. Phys., 166 (1995), 633–644 ; Chamseddine A. H., Fröhlich J., Grandjean O., “The gravitational sector in the Connes–Lott formulation of the standard model”, J. Math. Phys., 36 (1995), 6255–6275, arXiv: ; Chamseddine A. H., Connes A., “The spectral action principle”, Comm. Math. Phys., 186 (1997), 731–750, arXiv: hep-th/9209044gr-qc/9312031hep-th/9503093hep-th/9606001 | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl
[14] Douglas M. R., Hull C., “D-branes and the noncommutative torus”, J. High Energy Phys., 1998:2 (1998), Paper 8, 5 pp., arXiv: hep-th/9711165 | DOI | MR
[15] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR | Zbl
[16] Jaeckel J., Khoze V. V., Ringwald A., “Telltale traces of U(1) fields in noncommutative standard model extensions”, J. High Energy Phys., 2006:2 (2006), 028, 21 pp., arXiv: hep-ph/0508075 | DOI | MR
[17] Carlson C. E., Carone C. D., Zobin N., “Noncommutative gauge theory without Lorentz violation”, Phys. Rev. D, 66 (2002), 075001, 8 pp., arXiv: hep-th/0206035 | DOI
[18] Banerjee R., Chakraborty B., Kumar K., “Noncommutative gauge theories and Lorentz symmetry”, Phys. Rev. D, 70 (2004), 125004, 12 pp., arXiv: ; Iorio A., “Comment on “Noncommutative gauge theories and Lorentz symmetry””, Phys. Rev. D, 77 (2008), 048701, 5 pp. ; Banerjee R., Chakraborty B., Kumar K., “Reply to “Comment on `Noncommutative gauge theories and Lorentz symmetry””, Phys. Rev. D, 77 (2008), 048702, 3 pp. hep-th/0408197 | DOI | MR | DOI | MR | DOI | MR
[19] Kase H., Morita K., Okumura Y., Umezawa E., “Lorentz-invariant non-commutative space-time based on DFR algebra”, Progr. Theoret. Phys., 109 (2003), 663–685, arXiv: hep-th/0212176 | DOI | MR | Zbl
[20] Haghighat M., Ettefaghi M. M., “Parton model in Lorentz invariant non-commutative space”, Phys. Rev. D, 70 (2004), 034017, 6 pp., arXiv: hep-ph/0405270 | DOI
[21] Carone C. D., Kwee H. J., “Unusual high-energy phenomenology of Lorentz-invariant noncommutative field theories”, Phys. Rev. D, 73 (2006), 096005, 11 pp., arXiv: hep-ph/0603137 | DOI
[22] Ettefaghi M. M., Haghighat M., “Lorentz conserving noncommutative standard model”, Phys. Rev. D, 75 (2007), 125002, 11 pp., arXiv: hep-ph/0703313 | DOI | MR
[23] Saxell S., “On general properties of Lorentz-invariant formulation of noncommutative quantum field theory”, Phys. Lett. B, 666 (2008), 486–490, arXiv: 0804.3341 | DOI | MR
[24] Aschieri P., Lizzi F., Vitale P., “Twisting all the way: from classical mechanics to quantum fields”, Phys. Rev. D, 77 (2008), 025037, 16 pp., arXiv: ; Chaichian M., Salminem T., Tureanu A., Nishijima K., “Noncommutative quantum field theory: a confrontation of symmetries”, J. High Energy Phys., 2008:6 (2008), 078, 20 pp., arXiv: ; Banerjee R., Kumar K., “Deformed relativistic and nonrelativistic symmetries on canonical noncommutative spaces”, Phys. Rev. D, 75 (2007), 045008, 5 pp., arXiv: 0708.30020805.3500hep-th/0604162 | DOI | MR | DOI | MR | DOI | MR
[25] Chaichian M., Nishijima K., Tureanu A., “An interpretation of noncommutative field theory in terms of a quantum shift”, Phys. Lett. B, 633 (2006), 129–133, arXiv: hep-th/0511094 | DOI | MR
[26] Wess J., “Deformed coordinate spaces; derivatives”, Proceedings of the BW2003 Workshop on Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Perspectives of Balkans Collaboration (2003, Vrnjacka Banja, Serbia), Vrnjacka Banja, 2003, 122–128, arXiv: ; Dimitrijevic M., Wess J., Deformed bialgebra of diffeomorphims, arXiv: ; Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532, arXiv: ; Koch F., Tsouchnika E., “Construction of $\theta$-Poincaré algebras and their invariants on $\mathcal M_\theta$”, Nuclear Phys. B, 717 (2005), 387–403, arXiv: hep-th/0408080hep-th/0411224hep-th/0504183hep-th/0409012 | DOI | MR | Zbl | DOI | MR | Zbl
[27] Chaichian M., Kulish P. P., Nishijima K., Tureanu A., “On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT”, Phys. Lett. B, 604 (2004), 98–102, arXiv: ; Chaichian M., Prešnajder P., Tureanu A., “New concept of relativistic invariance in noncommutative space-time: twisted Poincaré symmetry and its implications”, Phys. Rev. Lett., 94 (2005), 151602, 4 pp., arXiv: hep-th/0408069hep-th/0409096 | DOI | MR | DOI
[28] Duval C., Horváthy P. A., “The exotic Galilei group and the “Peierls substitution””, Phys. Lett. B, 479 (2000), 284–290, arXiv: hep-th/0002233 | DOI | MR | Zbl
[29] Chaichian M., Sheikh-Jabbari M. M., Tureanu A., “Hydrogen atom spectrum and the Lamb shift in noncommutative QED”, Phys. Rev. Lett., 86 (2001), 2716–2719, arXiv: hep-th/0010175 | DOI
[30] Chaichian M., Demichec A., Prešnajder P., Sheikh-Jabbari M. M., Tureanu A., “Aharonov–Bohm effect in noncommutative spaces”, Phys. Lett. B, 527 (2002), 149–154, arXiv: hep-th/0012175 | DOI | MR | Zbl
[31] Gamboa J., Loewe M., Rojas J. C., “Noncommutative quantum mechanics”, Phys. Rev. D, 64 (2001), 067901, 3 pp., arXiv: hep-th/0010220 | DOI | MR
[32] Nair V. P., Polychronakos A. P., “Quantum mechanics on the noncommutative plane and sphere”, Phys. Lett. B, 505 (2001), 267–274, arXiv: hep-th/0011172 | DOI | MR | Zbl
[33] Banerjee R., “A novel approach to noncommutativity in planar quantum mechanics”, Modern Phys. Lett. A, 17 (2002), 631–645, arXiv: hep-th/0106280 | DOI | MR | Zbl
[34] Bellucci S., Nersessian A., “Phases in noncommutative quantum mechanics on (pseudo)sphere”, Phys. Lett. B, 542 (2002), 295–300, arXiv: hep-th/0205024 | DOI | MR | Zbl
[35] Ho P.-M., Kao H.-C., “Noncommutative quantum mechanics from noncommutative quantum field theory”, Phys. Rev. Lett., 88 (2002), 151602, 4 pp., arXiv: hep-th/0110191 | DOI | MR
[36] Smailagic A., Spallucci E., “Feynman path integral on the non-commutative plane”, J. Phys. A: Math. Gen., 36 (2003), L467–L471, arXiv: hep-th/0307217 | DOI | MR | Zbl
[37] Jonke L., Meljanac S., “Representations of non-commutative quantum mechanics and symmetries”, Eur. Phys. J. C, 29 (2003), 433–439, arXiv: hep-th/0210042 | DOI | MR | Zbl
[38] Kokado A., Okamura T., Saito T., “Noncommutative quantum mechanics and Seiberg–Witten map”, Phys. Rev. D, 69 (2004), 125007, 6 pp., arXiv: hep-th/0401180 | DOI | MR
[39] Kijanka A., Kosinski P., “On noncommutative isotropic harmonic oscillator”, Phys. Rev. D, 70 (2004), 127702, 3 pp., arXiv: hep-th/0407246 | DOI
[40] Dadic I., Jonke L., Meljanac S., “Harmonic oscillator on noncommutative spaces”, Acta Phys. Slov., 55 (2005), 149–164, arXiv: hep-th/0301066
[41] Bellucci S., Yeranyan A., “Noncommutative quantum scattering in a central field”, Phys. Lett. B, 609 (2005), 418–423, arXiv: hep-th/0412305 | DOI | MR
[42] Calmet X., “Space-time symmetries of noncommutative spaces”, Phys. Rev. D, 71 (2005), 085012, 4 pp., arXiv: ; Calmet X., Selvaggi M., “Quantum mechanics on noncommutative spacetime”, Phys. Rev. D, 74 (2006), 037901, 4 pp., arXiv: hep-th/0411147hep-th/0608035 | DOI | MR | DOI
[43] Scholtz F. G., Chakraborty B., Govaerts J., Vaidya S., “Spectrum of the non-commutative spherical well”, J. Phys. A: Math. Theor., 40 (2007), 14581–14592, arXiv: 0709.3357 | DOI | MR | Zbl
[44] Rosenbaum M., Vergara J. D., Juarez L. R., “Noncommutative field theory from quantum mechanical space-space noncommutativity”, Phys. Lett. A, 367 (2007), 1–10, arXiv: 0709.3499 | DOI | MR
[45] Iorio A., Sýkora T., “On the space-time symmetries of noncommutative gauge theories,”, Internat. J. Modern Phys. A, 17 (2002), 2369–2376, arXiv: hep-th/0111049 | DOI | MR | Zbl
[46] Amorim R., “Tensor operators in noncommutative quantum mechanics”, Phys. Rev. Lett., 101 (2008), 081602, 4 pp., arXiv: 0804.4400 | DOI | MR
[47] Amorim R.,, “Dynamical symmetries in noncommutative theories”, Phys. Rev. D, 78 (2008), 105003, 7 pp., arXiv: 0808.3062 | DOI | MR
[48] Amorim R., “Fermions and noncommutative theories”, J. Math. Phys., 50 (2009), 022303, 7 pp., arXiv: 0808.3903 | DOI | MR | Zbl
[49] Amorim R., “Tensor coordinates in noncommutative mechanics”, J. Math. Phys., 50 (2009), 052103, 7 pp., arXiv: 0804.4405 | DOI | MR | Zbl
[50] Amorim R., Abreu E. M. C., “Quantum complex scalar fields and noncommutativity”, Phys. Rev. D, 80 (2009), 105010, 6 pp., arXiv: ; Amorim R., Abreu E. M. C., Guzman Ramirez W., “Noncommutative relativistic particles”, Phys. Rev. D, 81 (2010), 105005, 7 pp., arXiv: 0909.04651001.2178 | DOI | DOI | MR
[51] Cohen-Tannoudji C., Diu B., Laloe F., Quantum mechanics, John Wiley Sons, New York, 1997
[52] Dirac P. A. M., Lectures on quantum mechanics, Yeshiva University, New York, 1964 ; Sundermeyer K., Constrained dynamics. With applications to Yang–Mills theory, general relativity, classical spin, dual string model, Lecture Notes in Physics, 169, Springer-Verlag, Berlin, New York, 1982 ; Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton University Press, Princeton, NJ, 1992 | MR | MR | Zbl | MR | Zbl
[53] Abreu E. M. C., Mendes A. C. R., Oliveira W., Zangirolami A. O., Compactification of the noncommutative DFRA space, work in progress
[54] Oksanen M. A., Noncommutative gravitation as a gauge theory of twisted Poincaré symmetry, M.Sc. Thesis, 2008
[55] Abe Y., “Correspondence between Poincaré symmetry of commutative QFT and twisted Poincaré symmetry of noncommutative QFT”, Phys. Rev. D, 77 (2008), 125009, 9 pp., arXiv: ; Banerjee R., Samanta S., “Gauge symmetries on $\theta$-deformed spaces”, J. High Energy Phys., 2007:2 (2007), 046, 17 pp., arXiv: ; Banerjee R., Samanta S., “Gauge generators, transformations and identities on a noncommutative space”, Eur. Phys. J. C, 51 (2007), 207–215, arXiv: ; Tureanu A., “Twisted Poincaré symmetry and some implications on noncommutative quantum field theory”, Prog. Theor. Phys. Suppl., 171 (2007), 34–41, arXiv: 0709.1010hep-th/0611249hep-th/06082140706.0334 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI