@article{SIGMA_2010_6_a81,
author = {Nicolas Cramp\'e and Frank G\"ohmann and Andreas Kl\"umper},
title = {Universal {Low} {Temperature} {Asymptotics} of the {Correlation} {Functions} of the {Heisenberg} {Chain}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a81/}
}
TY - JOUR AU - Nicolas Crampé AU - Frank Göhmann AU - Andreas Klümper TI - Universal Low Temperature Asymptotics of the Correlation Functions of the Heisenberg Chain JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a81/ LA - en ID - SIGMA_2010_6_a81 ER -
%0 Journal Article %A Nicolas Crampé %A Frank Göhmann %A Andreas Klümper %T Universal Low Temperature Asymptotics of the Correlation Functions of the Heisenberg Chain %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a81/ %G en %F SIGMA_2010_6_a81
Nicolas Crampé; Frank Göhmann; Andreas Klümper. Universal Low Temperature Asymptotics of the Correlation Functions of the Heisenberg Chain. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a81/
[1] Boos H., Damerau J., Göhmann F., Klümper A., Suzuki J., Weiße A., “Short-distance thermal correlations in the XXZ chain”, J. Stat. Mech. Theory Exp., 2008 (2008), P08010, 23 pp., arXiv: 0806.3953 | DOI | MR
[2] Boos H., Göhmann F., “On the physical part of the factorized correlation functions of the $XXZ$ chain”, J. Phys. A: Math. Theor., 42 (2009), 315001, 27 pp., arXiv: 0903.5043 | DOI | MR | Zbl
[3] Boos H., Göhmann F., Klümper A., Suzuki J., “Factorization of multiple integrals representing the density matrix of a finite segment of the Heisenberg spin chain”, J. Stat. Mech. Theory Exp., 2006 (2006), P04001, 13 pp., arXiv: hep-th/0603064 | DOI
[4] Boos H., Göhmann F., Klümper A., Suzuki J., “Factorization of the finite temperature correlation functions of the $XXZ$ chain in a magnetic field”, J. Phys. A: Math. Theor., 40 (2007), 10699–10728, arXiv: 0705.2716 | DOI | MR
[5] Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., “Hidden Grassmann structure in the $XXZ$ model. II. Creation operators”, Comm. Math. Phys., 286 (2009), 875–932, arXiv: 0801.1176 | DOI | MR | Zbl
[6] Boos H. E., Korepin V. E., “Quantum spin chains and Riemann zeta function with odd arguments”, J. Phys. A: Math. Gen., 34 (2001), 5311–5316, arXiv: hep-th/0104008 | DOI | MR | Zbl
[7] Göhmann F., Klümper A., Seel A., “Integral representation of the density matrix of the $XXZ$ chain at finite temperature”, J. Phys. A: Math. Gen., 38 (2005), 1833–1841, arXiv: cond-mat/0412062 | DOI | MR | Zbl
[8] Jimbo M., Miwa T., Smirnov F., “Hidden Grassmann structure in the XXZ model. III. Introducing Matsubara direction”, J. Phys. A: Math. Theor., 42 (2009), 304018, 31 pp., arXiv: 0811.0439 | DOI | MR | Zbl
[9] Klümper A., “The spin-1/2 Heisenberg chain: thermodynamics, quantum criticality and spin-Peierls exponents”, Eur. Phys. J. B, 5 (1998), 677–685, arXiv: cond-mat/9803225 | DOI
[10] Suzuki M., “Transfer-matrix method and Monte-Carlo simulation in quantum spin systems”, Phys. Rev. B, 31 (1985), 2957–2965 | DOI
[11] Takahashi M., “Half-filled Hubbard model at low temperature”, J. Phys. C, 10 (1977), 1289–1301 | DOI
[12] Trippe C., Göhmann F., Klümper A., “Short-distance thermal correlations in the massive $XXZ$ chain”, Eur. Phys. J. B, 73 (2010), 253–264, arXiv: 0908.2232 | DOI | MR
[13] Tsuboi Z., “A note on the high temperature expansion of the density matrix for the isotropic Heisenberg chain”, Phys. A, 377 (2007), 95–101, arXiv: cond-mat/0611454 | DOI | MR
[14] Tsuboi Z., Shiroishi M., “High temperature expansion of the emptiness formation probability for the isotropic Heisenberg chain”, J. Phys. A: Math. Gen., 38 (2005), L363–L370, arXiv: cond-mat/0502569 | DOI | MR | Zbl