Universal Low Temperature Asymptotics of the Correlation Functions of the Heisenberg Chain
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the low temperature asymptotics of a function $\gamma$ that generates the temperature dependence of all static correlation functions of the isotropic Heisenberg chain.
Keywords: correlation functions; quantum spin chains; thermodynamic Bethe ansatz.
@article{SIGMA_2010_6_a81,
     author = {Nicolas Cramp\'e and Frank G\"ohmann and Andreas Kl\"umper},
     title = {Universal {Low} {Temperature} {Asymptotics} of the {Correlation} {Functions} of the {Heisenberg} {Chain}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a81/}
}
TY  - JOUR
AU  - Nicolas Crampé
AU  - Frank Göhmann
AU  - Andreas Klümper
TI  - Universal Low Temperature Asymptotics of the Correlation Functions of the Heisenberg Chain
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a81/
LA  - en
ID  - SIGMA_2010_6_a81
ER  - 
%0 Journal Article
%A Nicolas Crampé
%A Frank Göhmann
%A Andreas Klümper
%T Universal Low Temperature Asymptotics of the Correlation Functions of the Heisenberg Chain
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a81/
%G en
%F SIGMA_2010_6_a81
Nicolas Crampé; Frank Göhmann; Andreas Klümper. Universal Low Temperature Asymptotics of the Correlation Functions of the Heisenberg Chain. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a81/

[1] Boos H., Damerau J., Göhmann F., Klümper A., Suzuki J., Weiße A., “Short-distance thermal correlations in the XXZ chain”, J. Stat. Mech. Theory Exp., 2008 (2008), P08010, 23 pp., arXiv: 0806.3953 | DOI | MR

[2] Boos H., Göhmann F., “On the physical part of the factorized correlation functions of the $XXZ$ chain”, J. Phys. A: Math. Theor., 42 (2009), 315001, 27 pp., arXiv: 0903.5043 | DOI | MR | Zbl

[3] Boos H., Göhmann F., Klümper A., Suzuki J., “Factorization of multiple integrals representing the density matrix of a finite segment of the Heisenberg spin chain”, J. Stat. Mech. Theory Exp., 2006 (2006), P04001, 13 pp., arXiv: hep-th/0603064 | DOI

[4] Boos H., Göhmann F., Klümper A., Suzuki J., “Factorization of the finite temperature correlation functions of the $XXZ$ chain in a magnetic field”, J. Phys. A: Math. Theor., 40 (2007), 10699–10728, arXiv: 0705.2716 | DOI | MR

[5] Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., “Hidden Grassmann structure in the $XXZ$ model. II. Creation operators”, Comm. Math. Phys., 286 (2009), 875–932, arXiv: 0801.1176 | DOI | MR | Zbl

[6] Boos H. E., Korepin V. E., “Quantum spin chains and Riemann zeta function with odd arguments”, J. Phys. A: Math. Gen., 34 (2001), 5311–5316, arXiv: hep-th/0104008 | DOI | MR | Zbl

[7] Göhmann F., Klümper A., Seel A., “Integral representation of the density matrix of the $XXZ$ chain at finite temperature”, J. Phys. A: Math. Gen., 38 (2005), 1833–1841, arXiv: cond-mat/0412062 | DOI | MR | Zbl

[8] Jimbo M., Miwa T., Smirnov F., “Hidden Grassmann structure in the XXZ model. III. Introducing Matsubara direction”, J. Phys. A: Math. Theor., 42 (2009), 304018, 31 pp., arXiv: 0811.0439 | DOI | MR | Zbl

[9] Klümper A., “The spin-1/2 Heisenberg chain: thermodynamics, quantum criticality and spin-Peierls exponents”, Eur. Phys. J. B, 5 (1998), 677–685, arXiv: cond-mat/9803225 | DOI

[10] Suzuki M., “Transfer-matrix method and Monte-Carlo simulation in quantum spin systems”, Phys. Rev. B, 31 (1985), 2957–2965 | DOI

[11] Takahashi M., “Half-filled Hubbard model at low temperature”, J. Phys. C, 10 (1977), 1289–1301 | DOI

[12] Trippe C., Göhmann F., Klümper A., “Short-distance thermal correlations in the massive $XXZ$ chain”, Eur. Phys. J. B, 73 (2010), 253–264, arXiv: 0908.2232 | DOI | MR

[13] Tsuboi Z., “A note on the high temperature expansion of the density matrix for the isotropic Heisenberg chain”, Phys. A, 377 (2007), 95–101, arXiv: cond-mat/0611454 | DOI | MR

[14] Tsuboi Z., Shiroishi M., “High temperature expansion of the emptiness formation probability for the isotropic Heisenberg chain”, J. Phys. A: Math. Gen., 38 (2005), L363–L370, arXiv: cond-mat/0502569 | DOI | MR | Zbl