@article{SIGMA_2010_6_a80,
author = {Timothy E. Goldberg},
title = {Singular {Reduction} of {Generalized} {Complex} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a80/}
}
Timothy E. Goldberg. Singular Reduction of Generalized Complex Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a80/
[1] Baird T., Lin Y., “Topology of generalized complex quotients”, J. Geom. Phys., 60 (2010), 1539–1557, arXiv: 0802.1341 | DOI | MR | Zbl
[2] Bates L., Lerman E., “Proper group actions and symplectic stratified spaces”, Pacific J. Math., 181 (1997), 201–229, arXiv: dg-ga/9407003 | DOI | MR | Zbl
[3] Ben-Bassat O., Boyarchenko M., “Submanifolds of generalized complex manifolds”, J. Symplectic Geom., 2 (2004), 309–355, arXiv: math.DG/0309013 | MR | Zbl
[4] Bursztyn H., Cavalcanti G. R., Gualtieri M., “Reduction of Courant algebroids and generalized complex structures”, Adv. Math., 211 (2007), 726–765, arXiv: math.DG/0509640 | DOI | MR | Zbl
[5] Courant T. J., “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl
[6] Cushman R., Śniatycki J., “Differential structure of orbit spaces”, Canad. J. Math., 53 (2001), 715–755 | MR
[7] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | MR | Zbl
[8] Goldberg T. E., Hamiltonian actions in integral Kähler and generalized complex geometry, PhD Thesis, Cornell University, 2010
[9] Gualtieri M., Generalized complex structures, PhD Thesis, University of Oxford, 2003, arXiv: math.DG/0401221
[10] Guillemin V. W., Sternberg S., Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999 | MR
[11] Hitchin N.,, “Generalized Calabi–Yau manifolds”, Q. J. Math., 54 (2003), 281–308, arXiv: math.DG/0209099 | DOI | MR | Zbl
[12] Hu S., “Hamiltonian symmetries and reduction in generalized geometry”, Houston J. Math., 35 (2009), 787–811, arXiv: math.DG/0509060 | MR | Zbl
[13] Jotz M., Ratiu T. S., Śniatycki J., Singular reduction of Dirac structures, arXiv: 0901.3062
[14] Lin Y., Tolman S., “Symmetries in generalized Kähler geometry”, Comm. Math. Phys., 268 (2006), 199–222, arXiv: math.DG/0509069 | DOI | MR | Zbl
[15] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl
[16] Meyer K. R., “Symmetries and integrals in mechanics”, Dynamical Systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 259–272 | MR
[17] Nitta Y., “Convexity properties of generalized moment maps”, J. Math. Soc. Japan, 61 (2009), 1171–1204, arXiv: 0901.0361 | DOI | MR | Zbl
[18] Ortega J.-P., Ratiu T. S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004 | MR | Zbl
[19] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math. (2), 134 (1991), 375–422 | DOI | MR | Zbl
[20] Stiénon M., Xu P., “Reduction of generalized complex structures”, J. Geom. Phys., 58 (2008), 105–121, arXiv: math.DG/0509393 | DOI | MR | Zbl