Singular Reduction of Generalized Complex Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we develop results in the direction of an analogue of Sjamaar and Lerman's singular reduction of Hamiltonian symplectic manifolds in the context of reduction of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman). Specifically, we prove that if a compact Lie group acts on a generalized complex manifold in a Hamiltonian fashion, then the partition of the global quotient by orbit types induces a partition of the Lin–Tolman quotient into generalized complex manifolds. This result holds also for reduction of Hamiltonian generalized Kähler manifolds.
Keywords: generalized complex manifold; Hamiltonian action; generalized complex quotient; Lin–Tolman quotient; singular reduction.
@article{SIGMA_2010_6_a80,
     author = {Timothy E. Goldberg},
     title = {Singular {Reduction} of {Generalized} {Complex} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a80/}
}
TY  - JOUR
AU  - Timothy E. Goldberg
TI  - Singular Reduction of Generalized Complex Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a80/
LA  - en
ID  - SIGMA_2010_6_a80
ER  - 
%0 Journal Article
%A Timothy E. Goldberg
%T Singular Reduction of Generalized Complex Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a80/
%G en
%F SIGMA_2010_6_a80
Timothy E. Goldberg. Singular Reduction of Generalized Complex Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a80/

[1] Baird T., Lin Y., “Topology of generalized complex quotients”, J. Geom. Phys., 60 (2010), 1539–1557, arXiv: 0802.1341 | DOI | MR | Zbl

[2] Bates L., Lerman E., “Proper group actions and symplectic stratified spaces”, Pacific J. Math., 181 (1997), 201–229, arXiv: dg-ga/9407003 | DOI | MR | Zbl

[3] Ben-Bassat O., Boyarchenko M., “Submanifolds of generalized complex manifolds”, J. Symplectic Geom., 2 (2004), 309–355, arXiv: math.DG/0309013 | MR | Zbl

[4] Bursztyn H., Cavalcanti G. R., Gualtieri M., “Reduction of Courant algebroids and generalized complex structures”, Adv. Math., 211 (2007), 726–765, arXiv: math.DG/0509640 | DOI | MR | Zbl

[5] Courant T. J., “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl

[6] Cushman R., Śniatycki J., “Differential structure of orbit spaces”, Canad. J. Math., 53 (2001), 715–755 | MR

[7] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | MR | Zbl

[8] Goldberg T. E., Hamiltonian actions in integral Kähler and generalized complex geometry, PhD Thesis, Cornell University, 2010

[9] Gualtieri M., Generalized complex structures, PhD Thesis, University of Oxford, 2003, arXiv: math.DG/0401221

[10] Guillemin V. W., Sternberg S., Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999 | MR

[11] Hitchin N.,, “Generalized Calabi–Yau manifolds”, Q. J. Math., 54 (2003), 281–308, arXiv: math.DG/0209099 | DOI | MR | Zbl

[12] Hu S., “Hamiltonian symmetries and reduction in generalized geometry”, Houston J. Math., 35 (2009), 787–811, arXiv: math.DG/0509060 | MR | Zbl

[13] Jotz M., Ratiu T. S., Śniatycki J., Singular reduction of Dirac structures, arXiv: 0901.3062

[14] Lin Y., Tolman S., “Symmetries in generalized Kähler geometry”, Comm. Math. Phys., 268 (2006), 199–222, arXiv: math.DG/0509069 | DOI | MR | Zbl

[15] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl

[16] Meyer K. R., “Symmetries and integrals in mechanics”, Dynamical Systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 259–272 | MR

[17] Nitta Y., “Convexity properties of generalized moment maps”, J. Math. Soc. Japan, 61 (2009), 1171–1204, arXiv: 0901.0361 | DOI | MR | Zbl

[18] Ortega J.-P., Ratiu T. S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004 | MR | Zbl

[19] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math. (2), 134 (1991), 375–422 | DOI | MR | Zbl

[20] Stiénon M., Xu P., “Reduction of generalized complex structures”, J. Geom. Phys., 58 (2008), 105–121, arXiv: math.DG/0509393 | DOI | MR | Zbl