@article{SIGMA_2010_6_a8,
author = {Emanuela Caliceti and Francesco Cannata and Sandro Graffi},
title = {$\mathcal P\mathcal T$ {Symmetric} {Schr\"odinger} {Operators:} {Reality} of the {Perturbed} {Eigenvalues}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a8/}
}
TY - JOUR AU - Emanuela Caliceti AU - Francesco Cannata AU - Sandro Graffi TI - $\mathcal P\mathcal T$ Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a8/ LA - en ID - SIGMA_2010_6_a8 ER -
%0 Journal Article %A Emanuela Caliceti %A Francesco Cannata %A Sandro Graffi %T $\mathcal P\mathcal T$ Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a8/ %G en %F SIGMA_2010_6_a8
Emanuela Caliceti; Francesco Cannata; Sandro Graffi. $\mathcal P\mathcal T$ Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a8/
[1] Caliceti E., Graffi S., Sjöstrand J., “Spectra of $\mathcal P\mathcal T$-symmetric operators and perturbation theory”, J. Phys. A: Math. Gen., 38 (2005), 185–193 ; math-ph/0407052 | DOI | MR | Zbl
[2] Caliceti E., Graffi S., Sjöstrand J., “$\mathcal P\mathcal T$ symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum”, J. Phys. A: Math. Theor., 40 (2007), 10155–10170 ; arXiv:0705.4218 | DOI | MR | Zbl
[3] Caliceti E., Cannata F., Graffi S., “Perturbation theory of $\mathcal P\mathcal T$ symmetric Hamiltonians”, J. Phys. A: Math. Gen., 39 (2006), 10019–10027 ; math-ph/0607039 | DOI | MR | Zbl
[4] Rotter I., Real eigenvalues in non-Hermitian quantum physics, arXiv:0909.1232
[5] Guo A., Salamo G. J., Duchesne D., Morandotti R., Volatier-Ravat M., Aimez V., Siviloglou G. A., Chistodoulides D. N., “Observation of $\mathcal P\mathcal T$-symmetry breaking in complex optical potentials”, Phys. Rev. Lett., 103 (2009), 093902, 4 pp., ages | DOI
[6] Seyranian A. P., Kirillov O. N., Mailybaev A. A., “Coupling of eigenvalues of complex matrices at diabolic and exceptional points”, J. Phys. A: Math. Gen., 38 (2005), 1732–1740 ; math-ph/0411024 | DOI | MR
[7] Kirillov O. N., Mailybaev A. A., Seyranian A. P., “Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation”, J. Phys. A: Math. Gen., 38 (2005), 5531–5546 ; math-ph/0411006 | DOI | MR | Zbl
[8] Albeverio S., Motovilov A. K., Shkalikov A. A., “Bounds on variation of spectral subspaces under $J$-self-adjoint perturbations”, Integral Equations Operator Theory, 64 (2009), 455–486 ; arXiv:0808.2783 | DOI | MR | Zbl
[9] Albeverio S., Motovilov A. K., Tretter C., Bounds on the spectrum and reducing subspaces of a $J$-self-adjoint operator, arXiv:0909.1211
[10] Caliceti E., Cannata F., Graffi S., “An analytic family of $\mathcal P\mathcal T$-symmetric Hamiltonians with real eigenvalues”, J. Phys. A: Math. Theor., 41 (2008), 244008, 6 pp., ages | DOI | MR | Zbl
[11] Nanayakkara A., “Real eigenspectra in non-Hermitian multidimensional Hamiltonians”, Phys. Lett. A, 304 (2002), 67–72 | DOI | MR | Zbl
[12] Nanayakkara A., “Classical motion of complex 2-D non-Hermitian Hamiltonian systems”, Czechoslovak J. Phys., 54 (2004), 101–107 | DOI | MR
[13] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 ; physics/9712001 | DOI | MR | Zbl
[14] Dorey P., Dunning C., Tateo R., “From $\mathcal P\mathcal T$-symmetric quantum mechanics to conformal field theory”, Pramana J. Phys., 73 (2009), 217–239 ; arXiv:0906.1130 | DOI
[15] Dorey P., Dunning C., Lishman A., Tateo R., “$\mathcal P\mathcal T$ symmetry breaking and exceptional points for a class of inhomogeneous complex potentials”, J. Phys. A: Math. Theor., 42 (2009), 465302, 41 pp., ages ; arXiv:0907.3673 | DOI | MR | Zbl
[16] Bender C. M., Besseghir K., Jones H. F., Yin X., “Small-$\epsilon$ behavior of the non-Hermitian $\mathcal P\mathcal T$-symmetric Hamiltonian $H=p^2+x^2(ix)^\epsilon$”, J. Phys. A: Math. Theor., 42 (2009), 355301, 10 pp., ages ; arXiv:0906.1291 | DOI | MR | Zbl
[17] Dorey P., Dunning C., Tateo R.,, “Supersymmetry and the spontaneous breakdown of $\mathcal P\mathcal T$ symmetry”, J. Phys. A: Math. Gen., 34 (2001), L391–L400 ; hep-th/0104119 | DOI | MR | Zbl
[18] Shin K. C., “On the reality of the eigenvalues for a class of $\mathcal P\mathcal T$-symmetric oscillators”, Comm. Math. Phys., 229 (2002), 543–564 ; math-ph/0201013 | DOI | MR | Zbl
[19] Kato T., Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin – New York, 1976 | MR
[20] Reed M., Simon B., Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York – London, 1978 | MR | Zbl
[21] Vock E., Hunziker W., “Stability of Schrödinger eigenvalue problems”, Comm. Math. Phys., 83 (1982), 281–302 | DOI | MR | Zbl
[22] Bender C. M., Holm D. D., Hook D. W., “Complexified dynamical systems”, J. Phys. A: Math. Theor., 40 (2007), F793–F804 ; arXiv:0705.3893 | DOI | MR