@article{SIGMA_2010_6_a79,
author = {Anjan Kundu},
title = {Quantum {Integrable} {1D~anyonic} {Models:} {Construction} through {Braided} {Yang{\textendash}Baxter} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a79/}
}
Anjan Kundu. Quantum Integrable 1D anyonic Models: Construction through Braided Yang–Baxter Equation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a79/
[1] Wilczek F., “Magnetic flux, angular momentum and statistics”, Phys. Rev. Lett., 48 (1982), 1144–1146 | DOI | MR
[2] Camino F. F., Zhou W., Goldman V. J., “Realization of a Laughlin quasiparticle interferometer: observation of fractional statistics”, Phys. Rev. B, 72 (2005), 075342, 8 pp., arXiv: cond-mat/0502406 | DOI
[3] Kitaev A. Yu., “Fault-tolerant quantum computation by anyons”, Ann. Physics, 303 (2003), 2–30, arXiv: ; Kitaev A. Yu., “Anyons in an exactly solved model and beyond”, Ann. Physics, 321 (2006), 2–111, arXiv: ; Trebst S., Troyer M., Wang Z., Ludwig A. W., “A short introduction to Fibonacci anyon models”, Progr. Theoret. Phys. Suppl., 176 (2008), 384–407, arXiv: ; Nayak C., Simon S. H., Stern A., Freedman M., Das Sarma S., “Non-abelian anyons and topological quantum computation”, Rev. Modern Phys., 80 (2008), 1083–1159, arXiv: quant-ph/9707021cond-mat/05064380902.32750707.1889 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl | DOI | MR
[4] Pâtu O. I., Korepin V. E., Averin D. V., “Correlation functions of one-dimensional Lieb–Liniger anyons”, J. Phys. A: Math. Theor., 40 (2007), 14963–14984, arXiv: 0707.4520 | DOI | MR
[5] Kundu A.,, “Exact solution of double $\delta$-function Bose gas through an interacting anyon gas”, Phys. Rev. Lett., 83 (1999), 1275–1278, arXiv: hep-th/9811247 | DOI | MR | Zbl
[6] Batchelor M. T., Guan X.-W., Kundu A., “One-dimensional anyons with competing $\delta$-function and derivative $\delta$-function potentials”, J. Phys. A: Math. Theor., 41 (2008), 352002, 8 pp., arXiv: 0805.1770 | DOI | MR | Zbl
[7] Batchelor M. T., Foerster A., Guan X.-W., Links J., Zhou H.-Q., “The quantum inverse scattering method with anyonic grading”, J. Phys. A: Math. Theor., 41 (2008), 465201, 13 pp., arXiv: 0807.3197 | DOI | MR | Zbl
[8] Batchelor M. T., Guan X.-W., Oelkers N., “One-dimensional interacting anyon gas: low energy properties and Haldane exclusion statistics”, Phys. Rev. Lett., 96 (2006), 210402, 4 pp., arXiv: ; Girardeau M. D., “Anyon-fermion mapping and applications to ultracold gasses in tight waveguides”, Phys. Rev. Lett., 97 (2006), 100402, 4 pp., arXiv: ; Averin D. V., Nesteroff J. A., “Coulomb blockade of anyons in quantum antidots”, Phys. Rev. Lett., 99 (2007), 096801, 4 pp., arXiv: ; Batchelor M. T., Guan X.-W., He J.-S., “The Bethe ansatz for one-dimensional interacting anyons”, J. Stat. Mech. Theory Exp., 2007 (2007), P03007, 19 pp., arXiv: ; Calabrese P., Mintchev M., “Correlation functions of one-dimensionalanyonic fluids”, Phys. Rev. B, 75 (2007), 233104, 4 pp., arXiv: ; Santachiara R., “Increasing of entangement entropy from pure to random quantum critical chains”, J. Stat. Mech. Theory Exp., 2006 (2006), L06002, 8 pp., arXiv: ; Pâtu O. I., Korepin V. E., Averin D. V., “One-dimensional impenetrable anyons in thermal equillibrium. I. Anyonic generalizations of Lenard's formula”, J. Phys. A: Math. Theor., 41 (2008), 145006, 15 pp., arXiv: ; Pâtu O. I., Korepin V. E., Averin D. V., “One-dimensional impenetrable anyons in thermal equillibrium. II. Determinant represenation for the dynamic correlation functions”, J. Phys. A: Math. Theor., 41 (2008), 255205, 19 pp., arXiv: ; del Campo A., “Fermionization and bosonization of expanding one-dimensional anyonic fluids”, Phys. Rev. A, 78 (2008), 045602, 4 pp., arXiv: cond-mat/0603643cond-mat/06043570704.0439cond-mat/0611450cond-mat/0703117cond-mat/06025270801.43970803.07500805.3786 | DOI | DOI | DOI | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI
[9] Keilmann T., Lanzmich S., McCulloch I., Roncaglia M., Statistically induced phase transitions: turning bosons smoothly via anyons into fermions, arXiv: 1009.2036
[10] Lieb E. H., Liniger W., “Exact analysis of an interacting Bose gas. I. The general solution and the ground state”, Phys. Rev., 130 (1963), 1605–1616 | DOI | MR | Zbl
[11] Shnirman A. G., Malomed B. A., Ben-Jacob E., “Nonperturbative studies of a quantum higher order nonlinear Schrödinger model using the Bethe ansatz”, Phys. Rev. A, 50 (1994), 3453–3463 | DOI
[12] Hlavatý L., Kundu A., “Quantum integrability of non-ultralocal models through Baxterisation of quantised braided algebra”, Internat. J. Modern Phys. A, 11 (1996), 2143–2165, arXiv: hep-th/9406215 | DOI | MR | Zbl
[13] Kundu A., “Exact Bethe ansatz solution of non-ultralocal quantum mKdV model”, Modern Phys. Lett. A, 10 (1995), 2955–2966, arXiv: hep-th/9510131 | DOI | MR | Zbl
[14] Faddeev L. D., “Quantum completely integrable models in field theory”, Mathematical Physics Reviews, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 107–155 | MR
[15] Kundu A.,, Exact solution of anyonic NLS quantum field model, in preparation
[16] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | MR | Zbl