Quantum Integrable 1D anyonic Models: Construction through Braided Yang–Baxter Equation
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Applying braided Yang–Baxter equation quantum integrable and Bethe ansatz solvable 1D anyonic lattice and field models are constructed. Along with known models we discover novel lattice anyonic and $q$-anyonic models as well as nonlinear Schrödinger equation (NLS) and the derivative NLS quantum field models involving anyonic operators, $N$-particle sectors of which yield the well known anyon gases, interacting through $\delta$ and derivative $\delta$-function potentials.
Keywords: nonultralocal model; braided YBE; quantum integrability; 1D anyonic and $q$-anyonic lattice models; anyonic NLS and derivative NLS field models; algebraic Bethe ansatz.
@article{SIGMA_2010_6_a79,
     author = {Anjan Kundu},
     title = {Quantum {Integrable} {1D~anyonic} {Models:} {Construction} through {Braided} {Yang{\textendash}Baxter} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a79/}
}
TY  - JOUR
AU  - Anjan Kundu
TI  - Quantum Integrable 1D anyonic Models: Construction through Braided Yang–Baxter Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a79/
LA  - en
ID  - SIGMA_2010_6_a79
ER  - 
%0 Journal Article
%A Anjan Kundu
%T Quantum Integrable 1D anyonic Models: Construction through Braided Yang–Baxter Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a79/
%G en
%F SIGMA_2010_6_a79
Anjan Kundu. Quantum Integrable 1D anyonic Models: Construction through Braided Yang–Baxter Equation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a79/

[1] Wilczek F., “Magnetic flux, angular momentum and statistics”, Phys. Rev. Lett., 48 (1982), 1144–1146 | DOI | MR

[2] Camino F. F., Zhou W., Goldman V. J., “Realization of a Laughlin quasiparticle interferometer: observation of fractional statistics”, Phys. Rev. B, 72 (2005), 075342, 8 pp., arXiv: cond-mat/0502406 | DOI

[3] Kitaev A. Yu., “Fault-tolerant quantum computation by anyons”, Ann. Physics, 303 (2003), 2–30, arXiv: ; Kitaev A. Yu., “Anyons in an exactly solved model and beyond”, Ann. Physics, 321 (2006), 2–111, arXiv: ; Trebst S., Troyer M., Wang Z., Ludwig A. W., “A short introduction to Fibonacci anyon models”, Progr. Theoret. Phys. Suppl., 176 (2008), 384–407, arXiv: ; Nayak C., Simon S. H., Stern A., Freedman M., Das Sarma S., “Non-abelian anyons and topological quantum computation”, Rev. Modern Phys., 80 (2008), 1083–1159, arXiv: quant-ph/9707021cond-mat/05064380902.32750707.1889 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl | DOI | MR

[4] Pâtu O. I., Korepin V. E., Averin D. V., “Correlation functions of one-dimensional Lieb–Liniger anyons”, J. Phys. A: Math. Theor., 40 (2007), 14963–14984, arXiv: 0707.4520 | DOI | MR

[5] Kundu A.,, “Exact solution of double $\delta$-function Bose gas through an interacting anyon gas”, Phys. Rev. Lett., 83 (1999), 1275–1278, arXiv: hep-th/9811247 | DOI | MR | Zbl

[6] Batchelor M. T., Guan X.-W., Kundu A., “One-dimensional anyons with competing $\delta$-function and derivative $\delta$-function potentials”, J. Phys. A: Math. Theor., 41 (2008), 352002, 8 pp., arXiv: 0805.1770 | DOI | MR | Zbl

[7] Batchelor M. T., Foerster A., Guan X.-W., Links J., Zhou H.-Q., “The quantum inverse scattering method with anyonic grading”, J. Phys. A: Math. Theor., 41 (2008), 465201, 13 pp., arXiv: 0807.3197 | DOI | MR | Zbl

[8] Batchelor M. T., Guan X.-W., Oelkers N., “One-dimensional interacting anyon gas: low energy properties and Haldane exclusion statistics”, Phys. Rev. Lett., 96 (2006), 210402, 4 pp., arXiv: ; Girardeau M. D., “Anyon-fermion mapping and applications to ultracold gasses in tight waveguides”, Phys. Rev. Lett., 97 (2006), 100402, 4 pp., arXiv: ; Averin D. V., Nesteroff J. A., “Coulomb blockade of anyons in quantum antidots”, Phys. Rev. Lett., 99 (2007), 096801, 4 pp., arXiv: ; Batchelor M. T., Guan X.-W., He J.-S., “The Bethe ansatz for one-dimensional interacting anyons”, J. Stat. Mech. Theory Exp., 2007 (2007), P03007, 19 pp., arXiv: ; Calabrese P., Mintchev M., “Correlation functions of one-dimensionalanyonic fluids”, Phys. Rev. B, 75 (2007), 233104, 4 pp., arXiv: ; Santachiara R., “Increasing of entangement entropy from pure to random quantum critical chains”, J. Stat. Mech. Theory Exp., 2006 (2006), L06002, 8 pp., arXiv: ; Pâtu O. I., Korepin V. E., Averin D. V., “One-dimensional impenetrable anyons in thermal equillibrium. I. Anyonic generalizations of Lenard's formula”, J. Phys. A: Math. Theor., 41 (2008), 145006, 15 pp., arXiv: ; Pâtu O. I., Korepin V. E., Averin D. V., “One-dimensional impenetrable anyons in thermal equillibrium. II. Determinant represenation for the dynamic correlation functions”, J. Phys. A: Math. Theor., 41 (2008), 255205, 19 pp., arXiv: ; del Campo A., “Fermionization and bosonization of expanding one-dimensional anyonic fluids”, Phys. Rev. A, 78 (2008), 045602, 4 pp., arXiv: cond-mat/0603643cond-mat/06043570704.0439cond-mat/0611450cond-mat/0703117cond-mat/06025270801.43970803.07500805.3786 | DOI | DOI | DOI | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI

[9] Keilmann T., Lanzmich S., McCulloch I., Roncaglia M., Statistically induced phase transitions: turning bosons smoothly via anyons into fermions, arXiv: 1009.2036

[10] Lieb E. H., Liniger W., “Exact analysis of an interacting Bose gas. I. The general solution and the ground state”, Phys. Rev., 130 (1963), 1605–1616 | DOI | MR | Zbl

[11] Shnirman A. G., Malomed B. A., Ben-Jacob E., “Nonperturbative studies of a quantum higher order nonlinear Schrödinger model using the Bethe ansatz”, Phys. Rev. A, 50 (1994), 3453–3463 | DOI

[12] Hlavatý L., Kundu A., “Quantum integrability of non-ultralocal models through Baxterisation of quantised braided algebra”, Internat. J. Modern Phys. A, 11 (1996), 2143–2165, arXiv: hep-th/9406215 | DOI | MR | Zbl

[13] Kundu A., “Exact Bethe ansatz solution of non-ultralocal quantum mKdV model”, Modern Phys. Lett. A, 10 (1995), 2955–2966, arXiv: hep-th/9510131 | DOI | MR | Zbl

[14] Faddeev L. D., “Quantum completely integrable models in field theory”, Mathematical Physics Reviews, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 107–155 | MR

[15] Kundu A.,, Exact solution of anyonic NLS quantum field model, in preparation

[16] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | MR | Zbl