Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin–Barnes Representation
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a method mixing Mellin–Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent) formal power series which follow from the perturbative evaluation of arbitrary "$N$-point" functions for the simple case of zero-dimensional $\phi^4$ field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin–Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.
Keywords: exactly and quasi-exactly solvable models; Mellin–Barnes representation; hyperasymptotics; resurgence; non-perturbative effects; field theories in lower dimensions.
@article{SIGMA_2010_6_a78,
     author = {Samuel Friot and David Greynat},
     title = {Non-Perturbative {Asymptotic} {Improvement} of {Perturbation} {Theory} and {Mellin{\textendash}Barnes} {Representation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a78/}
}
TY  - JOUR
AU  - Samuel Friot
AU  - David Greynat
TI  - Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin–Barnes Representation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a78/
LA  - en
ID  - SIGMA_2010_6_a78
ER  - 
%0 Journal Article
%A Samuel Friot
%A David Greynat
%T Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin–Barnes Representation
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a78/
%G en
%F SIGMA_2010_6_a78
Samuel Friot; David Greynat. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin–Barnes Representation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a78/

[1] Fredenhagen K., Rehren K.-H., Seiler E., “Quantum field theory: where we are”, Approaches to Fundamental Physics, Lecture Notes in Phys., 721, Springer, Berlin, 2007, 61–87, arXiv: hep-th/0603155 | MR | Zbl

[2] Olver F. W. J., “Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral”, SIAM J. Math. Anal., 22 (1991), 1460–1474 | DOI | MR | Zbl

[3] Berry M. V., Howls C. J., “Hyperasymptotics”, Proc. Roy. Soc. London Ser. A, 430:1880 (1990), 653–668 | DOI | MR | Zbl

[4] Paris R. B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Encyclopedia of Mathematics and its Applications, 85, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[5] Zinn-Justin J., “Perturbation series at large orders in quantum mechanics and field theories: application to the problem of resummation”, Phys. Rep., 70 (1981), 109–167 | DOI | MR

[6] Häußling R., “Quantum field theory on a discrete space and noncommutative geometry”, Ann. Physics, 299 (2002), 1–77, arXiv: hep-th/0109161 | DOI | MR | Zbl

[7] Rivasseau V., “Constructive field theory in zero dimension”, Adv. Math. Phys., 2009 (2009), 180159, 12 pp., arXiv: 0906.3524 | DOI | MR

[8] Nalimov M. Yu., Sergeev V. A., Sladkoff L., “Borel resummation of the $\epsilon$-expansion of the dynamic exponent $z$ in the model $A$ of the $\phi^4(O(n))$ theory”, Theoret. and Math. Phys., 159 (2009), 499–508 | DOI | MR | Zbl

[9] Dingle R. B., Asymptotic expansions: their derivation and interpretation, Academic Press, London, New York, 1973 | MR | Zbl

[10] Olver F. W. J., “On an asymptotic expansion of a ratio of Gamma functions”, Proc. Roy. Irish Acad. Sect. A, 95 (1995), 5–9 | MR | Zbl

[11] Beneke M., Jamin M., “$\alpha_s$ and the $\tau$ hadronic width: fixed-order, contour-improved and higher-order perturbation theory”, J. High Energy Phys., 2008:9 (2008), 044, 42 pp., arXiv: 0806.3156 | DOI

[12] Abramowitz M., Stegun I. (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Stegun Dover Publications, Inc., New York, 1966 | MR

[13] Berry M. V., Howls C. J., “Hyperasymptotics for integrals with saddles”, Proc. Roy. Soc. London Ser. A, 434:1892 (1991), 657–675 | DOI | MR | Zbl

[14] Olde Daalhuis A. B., Olver F. W. J., “Hyperasymptotic solutions of second-order linear differential equations. I”, Methods Appl. Anal., 2 (1995), 173–197 | MR | Zbl

[15] Pasquetti S., Schiappa R., “Borel and Stokes nonperturbative phenomena in topological string theory and $c=1$ matrix models”, Ann. Henri Poincaré, 11 (2010), 351–431, arXiv: 0907.4082 | DOI