@article{SIGMA_2010_6_a78,
author = {Samuel Friot and David Greynat},
title = {Non-Perturbative {Asymptotic} {Improvement} of {Perturbation} {Theory} and {Mellin{\textendash}Barnes} {Representation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a78/}
}
TY - JOUR AU - Samuel Friot AU - David Greynat TI - Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin–Barnes Representation JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a78/ LA - en ID - SIGMA_2010_6_a78 ER -
%0 Journal Article %A Samuel Friot %A David Greynat %T Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin–Barnes Representation %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a78/ %G en %F SIGMA_2010_6_a78
Samuel Friot; David Greynat. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin–Barnes Representation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a78/
[1] Fredenhagen K., Rehren K.-H., Seiler E., “Quantum field theory: where we are”, Approaches to Fundamental Physics, Lecture Notes in Phys., 721, Springer, Berlin, 2007, 61–87, arXiv: hep-th/0603155 | MR | Zbl
[2] Olver F. W. J., “Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral”, SIAM J. Math. Anal., 22 (1991), 1460–1474 | DOI | MR | Zbl
[3] Berry M. V., Howls C. J., “Hyperasymptotics”, Proc. Roy. Soc. London Ser. A, 430:1880 (1990), 653–668 | DOI | MR | Zbl
[4] Paris R. B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Encyclopedia of Mathematics and its Applications, 85, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[5] Zinn-Justin J., “Perturbation series at large orders in quantum mechanics and field theories: application to the problem of resummation”, Phys. Rep., 70 (1981), 109–167 | DOI | MR
[6] Häußling R., “Quantum field theory on a discrete space and noncommutative geometry”, Ann. Physics, 299 (2002), 1–77, arXiv: hep-th/0109161 | DOI | MR | Zbl
[7] Rivasseau V., “Constructive field theory in zero dimension”, Adv. Math. Phys., 2009 (2009), 180159, 12 pp., arXiv: 0906.3524 | DOI | MR
[8] Nalimov M. Yu., Sergeev V. A., Sladkoff L., “Borel resummation of the $\epsilon$-expansion of the dynamic exponent $z$ in the model $A$ of the $\phi^4(O(n))$ theory”, Theoret. and Math. Phys., 159 (2009), 499–508 | DOI | MR | Zbl
[9] Dingle R. B., Asymptotic expansions: their derivation and interpretation, Academic Press, London, New York, 1973 | MR | Zbl
[10] Olver F. W. J., “On an asymptotic expansion of a ratio of Gamma functions”, Proc. Roy. Irish Acad. Sect. A, 95 (1995), 5–9 | MR | Zbl
[11] Beneke M., Jamin M., “$\alpha_s$ and the $\tau$ hadronic width: fixed-order, contour-improved and higher-order perturbation theory”, J. High Energy Phys., 2008:9 (2008), 044, 42 pp., arXiv: 0806.3156 | DOI
[12] Abramowitz M., Stegun I. (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Stegun Dover Publications, Inc., New York, 1966 | MR
[13] Berry M. V., Howls C. J., “Hyperasymptotics for integrals with saddles”, Proc. Roy. Soc. London Ser. A, 434:1892 (1991), 657–675 | DOI | MR | Zbl
[14] Olde Daalhuis A. B., Olver F. W. J., “Hyperasymptotic solutions of second-order linear differential equations. I”, Methods Appl. Anal., 2 (1995), 173–197 | MR | Zbl
[15] Pasquetti S., Schiappa R., “Borel and Stokes nonperturbative phenomena in topological string theory and $c=1$ matrix models”, Ann. Henri Poincaré, 11 (2010), 351–431, arXiv: 0907.4082 | DOI