@article{SIGMA_2010_6_a77,
author = {Takao Suzuki},
title = {A~Particular {Solution} of {a~Painlev\'e} {System} in {Terms} of the {Hypergeometric} {Function} ${}_{n+1}F_n$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a77/}
}
TY - JOUR
AU - Takao Suzuki
TI - A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function ${}_{n+1}F_n$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2010
VL - 6
UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a77/
LA - en
ID - SIGMA_2010_6_a77
ER -
Takao Suzuki. A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function ${}_{n+1}F_n$. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a77/
[1] Fuji K., Suzuki T., “Drinfeld–Sokolov hierarchies of type $A$ and fourth order Painlevé systems”, Funkcial. Ekvac., 53 (2010), 143–167, arXiv: 0904.3434 | DOI | MR | Zbl
[2] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | MR | Zbl
[3] Okubo K., Takano K., Yoshida S., “A connection problem for the generalized hypergeometric equation”, Funkcial. Ekvac., 31 (1988), 483–495 | MR | Zbl
[4] Suzuki T., A class of higher order Painlevé systems arising from integrable hierarchies of type $A$, arXiv: 1002.2685
[5] Sakai H., Private communication
[6] Tsuda T., UC hierarchy and monodromy preserving deformation, arXiv: 1007.3450